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Abstract 

Many have investigated the sensitivity of face processing to 

both spatial frequencies and face orientation, but few have 

researched the sensitivity of face processing to the orientation 

of spatial frequencies. One recent exception has been Yu, 

Chai, & Chung (2011), which investigated facial expression 

recognition in regards to the orientation of spatial filters and 

showed that most information is contained in the horizontal 

orientation. Here, we model the Yu, Chai, & Chung (2011) 

study using the EMPATH model, a feed-forward neural 

network that has been used to model facial expression 

recognition (Dailey, Cottrell, Padgett, & Adolphs 2002). We 

used the NimStim set of facial expressions, which were the 

basis for the Yu, Chai, & Chung (2011) experiment, and 

followed their method of filtering images through different 

spatial orientations. Our results show that this simple, 

biologically plausible model produces very similar results to 

that of human subjects in their study. 

Keywords: emotions; facial expressions; spatial frequency; 
neural network; face recognition. 

Introduction 

Many studies have been conducted regarding the role of 

spatial frequencies in human face recognition (Näsänen, 

1999; Costen, Parker, & Craw, 1996; Gold, Bennett, & 

Sekuler, 1999), although the uniqueness of sensitivity of 

faces to spatial frequency has been debated (Williams, 

Willenbockel, & Gauthier (2009). However, few have 

explored how different orientations of spatial frequencies 

impact recognition of facial images. One such experiment 

was done by Yu, Chai, & Chung (2011), who passed facial 

images through orientation filters from -60 to 90 degrees in 

increments of 30 degrees. They found that the spatial 

information near horizontal (between -30 and 30 degrees) 

were the most important for normally-sighted human 

respondents to recognize facial expressions.  

Background: Yu, Chai, & Chung’s Experiment 

(2011) 

The aim of the Yu, Chai, & Chung (2011) experiment was 

to determine which spatial orientations on the face 

contained the most information for identifying emotions. 

The four emotions they tested were the closed-mouth forms 

of anger, fear, happiness, and sadness. Images were 

obtained from the NimStim set of facial expressions 

(Tottenham, Tanaka, Leon, McCarry, Nurse, Hare, Marcus, 

Westerlund, Casey, & Nelson 2009), and were distorted 

with an orientation filter of bandwidth 23
o
 in the Fourier 

domain, where the center of the filter ranged from -60
o
 to 

90
o
 in increments of 30

o
. Unfiltered images were used for 

comparison.  

Their experiment consisted of having 15 normally-sighted 

human subjects try to recognize the expression displayed by 

each image under a four-way forced choice. The results 

indicate that the human observers had the most success with 

images filtered at orientations near the horizontal (-30
o
, 0

o
, 

and 30
o
), suggesting that horizontal spatial information is 

most important for recognizing facial expressions. One 

modest exception to this trend is the fearful face; the human 

subjects tended to be significantly biased towards labeling a 

face as fearful as the orientation filter approached 90
o
, 

which seems to indicate that much of the information for 

fear is represented vertically.  

The purpose of this current experiment is to determine if a 

neural network model can produce similar results as the 

human subjects, especially in regards to the increased 

recognition performance for horizontal orientations and the 

preference towards fear for vertical orientations. Such 

evidence would provide greater support for Yu, Chai, & 

Chung’s (2011) findings and further validate EMPATH’s 

flexibility and accuracy in modeling human face 

recognition. 

Methods 

The Model 
The neural network used for this experiment closely 

followed the EMPATH model developed by Dailey et al. 

(2002), consisting of a biologically plausible, three-layer, 

feed-forward perceptron. EMPATH has been shown to have 

remarkable face recognition performance on aligned, 

grayscale images from Ekman and Friesen’s POFA (1976). 

Without being tuned specifically to those images, the 

network classified the emotions Anger, Disgust, Fear, 

Happiness, Sadness, and Surprise with 90% accuracy on 

average, compared to 91.6% for human subjects (Dailey et 

al., 2002). For this experiment, we kept much of the settings 

(outlined below) identical to those of the original EMPATH 
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model, so the network was not tailored for the spatially 

filtered images or the NimStim dataset. 

The first layer consisted of a set of model neurons based 

on the magnitude of Gabor filters, which have become a 

standard way to model complex cells in the early visual 

cortex (Daugman, 1985). In all, 40 different Gabor filters 

were used, in combinations of 5 scales and 8 orientations; 

filtering was done by passing the face images through a 29 

by 35 “grid” of filters, resulting in 40,600 responses per 

image. Note that the orientations of the Gabor filters were 

the same as in the original EMPATH model, and were not 

changed to fit with the spatial filtering used in this study. 

In order to reduce the dimensionality of the data set, we 

performed principal component analysis (PCA) on the 

Gabor filter outputs, producing 50 principal components 

(again based on the original EMPATH model). In this 

second layer, the principal components capture the 

distinguishing features of each facial expression but abstract 

away from details unique to each face; hence they allow the 

network to generalize to novel faces that are not part of the 

training set. As Dailey et al. stated, these components are 

similar to face cells in the inferior temporal cortex (2002). 

Lastly, the principal components were fed into the third 

layer, consisting of a simple linear perceptron with six 

softmax outputs representing anger, fear, happiness, 

surprise, disgust, and sadness. This perceptron was trained 

using stochastic gradient descent with the cross-entropy 

error criterion. We used an “all-or-none” teaching signal 

that had “1” for each correct expression and “0” for the 

incorrect expressions. In order to replicate the four-way 

forced-choice employed by Yu, Chai, and Chang (2011), we 

only took the results of the four relevant emotions via a 

process described in “Training, Validating, and Testing.” 

As stated in Dailey et al., we acknowledge that this 

perceptron is very simplistic (2002). However, since it was 

powerful enough to map the principal components to 

emotion categories, we did not feel that a non-linear 

classifier was needed. 

 

The Images 
The images used in the testing set by Yu, Chai, & Chung 

(2011) consisted of morphs of images taken from the 

NimStim set (2009), which reduced variations among faces 

(such as race, gender, etc.). Without access to these exact 

morphs, however, we simply used some of the original 

NimStim images to create our training and testing sets. 

Given this difference, our results still closely matched those 

of Yu, Chai, & Chung (2011).  

Our testing and training sets consisted of grayscale 

images of 30 different people (17 male, 13 female). Two of 

the images are shown in Figure 1. These images were 

judged to be the most frontally aligned, making them the 

most suitable for EMPATH. Each image was 240 x 292 

pixels in size and was cropped closely about the face.  

Both the testing and training sets contained images of six 

different emotions for each of the 30 people. These 

expressions were comprised of both open and closed-mouth 

forms of anger, fear, happiness, and sadness; the open-

mouth form of surprise; and the closed-mouth form of 

disgust. 

 

       
 

Figure 1: Two of the cropped images, corresponding to 

Happiness and Sadness 

 

The additional expressions were chosen for the training 

set so that the network would have a more comprehensive 

exposure to the range of different emotions, making it more 

similar to the experience of the human subjects in the 

experiment. Although the testing set also contained six 

expressions, our method for producing the network’s output 

was able to emulate a four-way forced choice among the 

four expressions used by Yu, Chai, & Chung (2011), which 

effectively limited the output to only those four choices 

(detailed in “Training, Validating, and Testing”). 

 

Processing the training set: In order to better replicate the 

images used by Yu, Chai, & Chung (2011), the 30 sets of 

images were closely cropped about the face using an oval 

mask so that only an oval-shaped portion of the face was 

visible. The parts that were cropped out were filled in with a 

uniform gray color of RGB value 127, and the entire image 

was adjusted to have a root-mean-square contrast value of 

0.096, as per specifications given in Yu & Chung (2011). 

Examples of images used in the training set are shown in 

Figure 2.  

 

       
 

Figure 2: Two images from the training set 

 

Processing the testing set: The process for creating the 

testing set was very similar to that of the training set. The 30 

original sets of images were first cropped, aligned, and then  

processed using Yu, Chai, & Chung’s (2011) filters at six 

orientations from -60
o
 to 90

o
 in increments of 30

o
, which 

selectively pass information at the specified orientations. 

Afterwards, the oval “mask” was applied to the images in 

the same way as that of the training set, and all of the 

images were again normalized to have the same root-mean-

square contrast of 0.096. Examples of the test images are 

shown in Figure 3. These were then processed by the same 

Gabor filters as used in the training set, and the resulting 

filter responses were projected onto the 50 eigenvectors 

using the PCA that was computed on the training set.  

 

1895



 

               
 

               
 

Figure 3: All 6 filtering conditions shown horizontally 

from -60
o
 (top left) to 90

o
 (bottom right). 

 

Training, validating, and testing 
The last layer of the model was a 50-input, 6-output single 

layer perceptron with softmax outputs trained using cross 

entropy. This procedure leads to outputs that compute the 

conditional probability of the category given the inputs 

(Bishop, 1995). Hence the output of the network is a 

probability distribution over the facial expression categories.  

Cross-validation and early stopping were used to prevent 

overfitting the network to the training set. Since there are 

thirty individuals in the training set, we performed thirty 

instances of cross validation, each time holding out a 

different individual in the training set to use for early 

stopping. This comprehensive cross-validation made the 

testing less prone to unevenness among the images. Overall, 

there were 30 independent test cycles; each time 1 set was 

chosen for testing, 1 chosen for validation, and the 

remaining 28 were used as the training set. The aggregate 

performance from these 30 sets of tests constituted the 

results for each filtering condition. The validation set was 

taken from the processed test set as a guide to know when to 

stop training (of course the validation and test images were 

never the same). Training was completed for each cycle 

once the cross-entropy error for the validation set was 

minimized using gradient descent, and the weights of the 

network were then used for the testing set.  

The testing procedure involved computing the weighted 

sum of the 50-element test set using the weights from 

training, then again applying the softmax function. A simple 

max function was used to judge if the testing outputs 

matched the teaching signals, and to create the confusion 

matrix. However, since the weights were trained with six 

facial expressions, the max function was applied only 

among the four target emotions to create a four-way forced 

choice similar to what a human subject would have to 

perform. This is valid because the softmax function created 

outputs that were probabilities of each emotion being 

correct; thus, although the teaching signal was “all or 

nothing,” the outputs were not. We note that when humans 

undergo the task of selecting among four target emotions, it 

is entirely possible that the emotion they perceive is not 

among the four options, and thus they may have to answer 

with their second or third choice. This is essentially what we 

have emulated with our network. 

 

Results 

Our model was able to fit the human data very well in 

several measures. Much of the data presented by Yu, Chai, 

& Chung (2011) is displayed in the form of confusion 

matrices, which pit the human responses against the actual 

targets. We used the same technique to display our data. 

Since Yu, Chai, & Chung (2011) presented their results on a 

poster, many of their figures lack numerical data. As such, 

much of our analysis will be dependent on comparing the 

visual presentations of data. The color spectrum of our 

confusion matrices were closely matched to that used by 

Yu, Chai, & Chung (2011) so that comparisons and 

conclusions can be made. 

 

Performance on Unfiltered Images 
Figures 4a and 4b show the confusion matrix for the 

unfiltered images given by Yu, Chai, & Chung (2011) and 

by our model, respectively. In addition to the hits, the 

columns show false alarms and rows depict misses. 

 

 
 

Figure 4a: Presented target vs. human responses (unfiltered) 

as presented in Yu, Chai, & Chung (2011). 
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Figure 4b: Presented target vs. model responses, for 

unfiltered images. 
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Both the model and the human subjects demonstrated 

very good performance overall in recognizing the unfiltered 

images. The model also exhibited similar behavior as the 

human subjects in terms of having false alarms for sad faces 

when presented with Angry and Fearful faces. This is likely 

a characteristic of the closed-mouth sad faces in the 

NimStim set in general, since similar false alarms were 

present in Tottenham et al. (2009). The total proportion of 

responses was also similar between EMPATH and the 

human subjects, which suggests that the model was 

sensitive to many of the same facial features that the human 

subjects used for classification. 

 

Performance for individual filters 
The results for the individual filters demonstrate that 

recognition performance decreased as the filter orientations 

approached 90
o
. Figures 5a and 5b illustrate the 

performances of humans and of our model, respectively. 

Both sets of confusion matrices distinctly show greater 

occurrences of misses and false alarms at orientations near 

the vertical; i.e. 60
o
, -60

o
, and 90

o
. Some other general 

trends can be drawn from the data. For both humans and the 

model, sad faces tended to draw more false alarms and 

misses, regardless of the filter condition. Angry expressions 

tended to lose their uniqueness as the filters neared vertical, 

resulting in many misses, and few hits and false alarms.  

One informative visualization of recognition performance 

is plotting the d prime calculations for each filter, which 

indicates how strong a signal is in relation to surrounding 

noise (Abdi, 2010). Hence, the d prime calculation for each 

filtering condition is proportional to how recognizable the 

expression is with that filter. Figures 6a and 6b depict 

graphs of d primes for each filtering condition normalized to 

the d prime of the unfiltered images (higher d primes still 

correlate to higher recognition performance).  

 

 
 

Figure 5a: Human performance for each filtering condition. 

From Yu, Chai, & Chung (2011). 

 

  
 

Figure 5b: EMPATH performances for each filtering 

condition. 

 

 
 

Figure 6a: Human data from Yu, Chai, & Chung (2011), 

showing d primes of each filtering condition, normalized to 

the unfiltered condition. Note that data for -90
o
 was copied 

from data for 90
o
.  

 

 
 

Figure 6b: Data from the EMPATH model showing d 

primes of each filter normalized to the unfiltered images. 

 

Both d prime charts demonstrate lower recognition 

performance as the filters approached 90
o
. We note that 
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results from the EMPATH model are not as symmetrical as 

those from the human data (e.g. the discrepancy between the 

values for -30 and 30 degrees for happiness, and the M-

shaped graph for fear). This is likely due to the fact that the 

original images are not vertically balanced; i.e. the positive 

and negative filters each obstruct slightly different features 

of the expressions. The resulting images were likely 

different enough to confuse the network. It would be 

worthwhile in the future to explore this phenomenon of 

asymmetry, especially since it was not apparent in the 

human data. 

As noted earlier, fearful faces were less affected by the 

filter orientations as the other three emotions. Both d prime 

charts show that fear was the most easily recognized at the 

90
o
 orientation. The earlier confusion matrices (Figures 5a 

and 5b) likewise depict a relatively steady percentage of hits 

for fearful faces. Much of this is attributed to the fact that 

both human observers and EMPATH exhibited a significant 

bias towards fear at the vertical orientations, which 

increased the occurrences of both hits and false alarms. 

Figure 7 illustrates EMPATH’s high proportion of 

responses for fear at the vertical orientations. At the 

horizontal orientations, each emotion constituted close to 

25% of the responses, but at the vertical orientation, 

responses in favor of fear approached 40%. 

 

 
 

Figure 7: Total proportion of responses exhibited by 

EMPATH for each filter orientation. 

 

Aggregate Performance of 6 filters 
EMPATH’s cumulative performance across all 6 filters is 

also similar to that of the human observers. Tables 1a and 

1b show the overall performance of the human subjects and 

of EMPATH, respectively. 

Firstly, the two tables show that with the exception of 

anger, EMPATH does significantly better in recognizing 

expressions than do the human subjects. Of course, the 

model can always be tailored to perform either better or 

worse, but we did not want to make adjustments just to suit 

these images. Secondly, the two tables depict many similar 

trends in the responses between the humans and the model. 

The overall proportion of responses shows that both the 

humans and the model were biased towards fear and 

sadness, and that both were biased against anger. In both 

cases, anger was the most difficult expression to recognize 

and also the most difficult with which to be confused, based 

on the overall percentage of responses. The human subjects 

and EMPATH also had difficulty recognizing sad faces, but 

there was a high false-alarm rate as well. The Spearman 

rank correlation between the two matrices was very good, at 

r = 0.976 (p < 0.001) for the complete matrices. Since we 

were also interested in the misses and false alarms, we also 

calculated the rank just for the off-diagonals, which was 

very similar at r = 0.942 (p < 0.001).  

 

Table 1a: Aggregate performance of human subjects for 

all 6 filter orientations. 

 

 
 

Table 1b: Aggregate performace of EMPATH for all 6 

filter orientations 

 

 
 

Discussion 

The aim of this present experiment was to model the 

experiment conducted by Yu, Chai, & Chung (2011) and 

determine if their results can be replicated using a neural  

network that was not specifically tuned to their images or 

their data. Our results demonstrate a strong similarity to the 

pattern of human responses, particularly in showing that 

information for facial expressions lies primarily on the 

horizontal orientation, with the modest exception of fearful 

faces, which solicited heavy bias from both human 

observers and EMPATH as the orientation approached 
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vertical. In particular, there was a very high proportion of 

hits and false alarms, suggesting that the vertical filter 

accentuated features in other expressions normally 

attributed to fear. Based on this data, it seems that much of 

the information for fear lies on the vertical, making it 

distinct from other expressions. It would be interesting to 

conduct further experiments with other image sets to 

determine if this phenomenon is a trait of the NimStim 

images or if it is more universal.  

Some discussion regarding our use of d prime is 

warranted. The procedure used by Yu, Chai, & Chung 

(2011) to calculate d prime follows the standard guideline of 

d’ = ZH - ZFA, where ZH and ZFA denote the inverse 

Gaussian distribution of hits and false alarms, respectively 

(Abdi, 2010). However, since this formula is typically used 

for two-way “Yes – No” tasks, the validity of using it for a 

four-way forced choice is debatable, since each emotion has 

one “Yes” response and three distinct “No” responses 

attached to it. Very little literature exist detailing d prime 

calculations for multiple-way forced choice scenarios, but 

Alexander (2006) described an easily-computed 

approximation to the original version in Green & Swets 

(1966). Based on that, we have recalculated our graph of d 

prime, which we depict in Figure 8. It should be noted that 

this approximation does not take false alarms into account. 

This resulted in a significantly higher d prime for fearful 

expressions, which were actually greater for filtering 

conditions near vertical than for unfiltered images. Given 

that this is an approximation, the validity may of course also 

be debated, but we nonetheless present both calculations. 

This serves as a prediction of how the Yu, Chai, & Chung 

(2011) data will look if it were analyzed in the same way. 

Given EMPATH’s demonstrated consistency in modeling 

human face recognition, another possible future experiment 

could be to determine which filtering orientations are ideal 

for recognition of each particular expression. It seems, 

based on this study, that the majority of expressions with the 

exception of fear would have an ideal filtering condition 

near the horizontal, but determining exact orientations 

would form testable hypotheses generated by the model. 

 

 
 

Figure 8: N-choice d prime approximations, following 

procedure outlined by Alexander (2006) and normalized to 

the unfiltered images. 
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