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Abstract

Human beings have the ability to learn to recognize a
new visual category based on only one or few training ex-
amples. Part of this ability might come from the use of
knowledge from previous visual experiences. We show that
such knowledge can be expressed as a set of “universal”
visual features, which are learned from randomly collected
natural scene images. Using these visual features, we have
obtained state-of-the-art performance on several classifica-
tion tasks using a single-layer classifier.

1. Introduction

One notable difference between the human visual sys-
tem and most computer vision systems is that we human
beings can learn a new visual category based on a few or
even one example of the new category, while most com-
puter systems require a large number of training samples to
work reasonably well. For example, we can recognize the
euro symbol (shown in Figure 1) under a wide variety of
visual conditions after having seen a single example. Such
an ability is necessary for the wide application of computer
vision, as collecting training examples is generally expen-
sive. In fact, due to the curse of dimensionality, almost all
real-world pattern recognition problems can be regarded as
problems of learning with few examples.

Figure 1. A handwritten euro (the European currency) symbol.

The problem of learning with scarce training samples has
been addressed in different ways. We find two of these ap-
proaches related to our approach. One approach, namely
semi-supervised learning [6], deals with the situation when
labeled training samples are scarce by utilizing information

from unlabeled samples. This approach reduces the amount
of human intervention necessary to build a working system,
since unlabeled data are generally plentiful and cheap to
collect. It does not help, however, when unlabeled sam-
ples are also rare or expensive to collect, whereas human
beings still exhibit reasonable performance in these cases.
Miller et al. [15] adopted an alternative approach to address
the problem of learning with few examples. They learned a
set of transforms from handwritten English letters and then
applied them to handwritten digits to regularize the input
patterns, which allowed them to build a handwritten digit
classifier using only several training examples per class.
The limitations of this method, however, are that the forms
of the transforms need to be predefined and that the visual
knowledge can only be shared between highly similar visual
categories.

These two types of techniques share one common char-
acteristic — they both use knowledge obtained from a second
information source to help building the classifier. They dif-
fer in how they define the knowledge and how the knowl-
edge is learned and transferred, but they both pick a sec-
ondary information source which shares some common
property with the labeled data, using either unlabeled data
belonging to the same category as the labeled data, or la-
beled data belonging to a different but visually similar cat-
egory, so that knowledge transfer is plausible.

The human visual system seems to adopt a similar ap-
proach. Low-level visual layers, such as retina, LGN (the
lateral geniculate nucleus) and V1 (the primary visual cor-
tex), are shared components that process all visual informa-
tion we perceive. These layers develop and mature during
childhood, and provide the basis for all the visual tasks en-
countered in the rest of life. If we loosely define the term
“visual feature” as any function of the image pixel values,
the above phenomenon can be interpreted as learning a set
of universal visual features from the scenes encountered
during childhood. These visual features are later applied to
all visual stimuli and are used to perform a variety of visual
tasks. Presumably these visual features provide one way to
transfer the knowledge obtained from previous visual expe-



riences and should help to build a classifier when labeled
data are rare.

The idea of “universal visual features” might at first sight
appear implausible, since this concept suggests that all vi-
sual stimuli share some characteristic in common such that
knowledge obtained from one set of stimuli can be applied
to a completely different set of visual stimuli. What is the
common property shared by the appearance of your hus-
band/wife’s face and the view out your kitchen window
that would allow you to better recognize the first by sim-
ply browsing the latter?

One observation is that they share similar local statisti-
cal structure. For example, if we take all of the 255, 025
8 x 8 image patches from each of the two images shown
on the top row of Figure 2, subtract the local mean from
each image patch, and apply PCA to them, the resulting ba-
sis functions (i.e., eigenvectors) all resemble DCT filters.
In fact, if we apply the PCA projection learned from im-
age patches extracted from one image to the image patches
from the other, and calculate the covariance matrix of the
projected features, we will see that most off-diagonal cells
have much smaller values than the diagonal cells. That is,
although the projection matrix is calculated to capture the
second-order local structure of one image, it also approxi-
mately captures the second-order local structure of the other
image. The observation here is that, although the two im-
ages display very different visual content, they share very
similar local/low-level statistical structure.
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Figure 2. Applying PCA on image patches. For each 512 x 512
image on the top row, we sample 255,025 8 x 8 image patches
and apply PCA to them. The top 49 eigenvectors are shown in the
lower panels.

In this paper we apply the hypothesis of universal visual
features to several classification tasks and achieve state of

the art results. We begin by briefly reviewing neuroscience
theories of low-level human vision in Section 2 from a com-
putational perspective. Then we show in Section 3 how to
learn a set of visual features from ten randomly collected
natural images by simulating visual information process-
ing up to the simple cells, the first layer of visual informa-
tion processing in the cerebral cortex using ICA. The main
difference between our approach and previous approaches
is that we apply a non-linearity to the ICA features on a
component-wise basis, that converts them from having a
sparse distribution to having a gaussian distribution. We
then apply PCA to that representation to reduce the dimen-
sionality and feed the resulting vectors into a single layer
classifier with a softmax activation function. Using this ap-
proach, we have achieved recognition performance compa-
rable to recently proposed computer vision techniques on
the Yale face dataset, the ORL face dataset, and the MNIST
dataset. We then show through an example when the tech-
nique will seriously fail, as well as a solution to deal with
such cases. We end the paper by discussing possible ap-
proaches to further improve this technique.

2. Theory of Low-level Human Vision
2.1. The Efficient Coding Hypothesis

What is the utility of unsupervised visual feature extrac-
tion from images? A similar question has been considered
in the neuroscience community for years: what is the func-
tional role of low-level visual layers in the human visual
pathway which appear to receive little top-down (i.e. task
driven) influence?

One hypothesis is that they capture the statistical struc-
ture of sensory inputs so that corresponding high-level de-
cisions can be made accordingly (see [3] for a brief review).
This hypothesis engenders two questions: (1) how to (quan-
titatively) define the statistical structure; and (2) how to cap-
ture the statistical structure. In 1954, Attneave [1] pointed
out that whether we perceive structures in an image depends
on how well we can predict a missing part of the image by
its remaining parts. This insight suggests that we can use
the dependency among the input features (i.e. dimensions),
or the redundancy of the inputs, as a quantitative measure-
ment of the statistical structure provided by the sensory in-
puts. Based on this observation, Barlow [2] hypothesized
that one plausible way for a neural system to capture the
statistical structure of its inputs was to remove their redun-
dancy in its outputs, because to do so, the neural system
must have a complete knowledge about statistical structures
contained in its inputs. This hypothesis is later referred to
as the redundancy reduction principle or the efficient coding
principle. Although the name appears to suggest pursuing
an economic coding, its essence is still focused upon cap-
turing the statistical structure of the sensory inputs.



2.2. Linear Efficient Coding

Linear implementations of the efficient coding hypothe-
sis, such as independent component analysis [S] and sparse
coding [16], have been used to explain the functional role of
simple cells in the primary visual cortex, the first layer of vi-
sual information processing in the cerebral cortex. These al-
gorithms are best described by a generative model, in which
the observed data # € R? is assumed to be generated by lin-
early mixing underlying signal source 5 € R":

i=A5+¢ (1)

where A € R4*P is the linear mixing matrix, € € R? de-
notes additive gaussian noises. The signal sources s;’s are
assumed to be statistically independent, which incorporates
the desire of capturing statistical structure in Z. For natural
image statistics studies, a sparse marginal distribution for
each s; is assumed, which is characterized by a peak at zero
and two heavy tails symmetrically residing on both sides
of zero, such as the Student-t distribution or the Laplacian
distribution. It was argued [16] that such a distribution in-
corporates the need to transfer more information with min-
imum energy cost, which is very important for a biological
system.

There are two optimization problems associated with this
model. One is to learn the most probable A given n obser-
vations Z1, ¥a, . . . , Zp, (see [14] on the learning algorithm).
Once the optimal A is learned, the inference problem is to
infer the most probable signal source § given the mixing
matrix A and an observation #. When the marginal distri-
bution is assumed to be a Laplacian distribution, the infer-
ence problem is a convex optimization problem and can be
solved efficiently.

If we apply the linear efficient coding algorithms to
natural image patches, the resulting basis functions (i.e.,
columns of A) resemble simple cell receptive fields, as
shown in Figure 4. It is widely observed [5, 13, 16] that
the basis functions learned from different image datasets are
qualitatively similar, which suggests even though these im-
ages display very different global contents they share simi-
lar local statistical structure.

2.3. Before Linear Efficient Coding

The visual information passes through retina and LGN
before reaching the primary visual cortex. What happens
there and why?

The classical theory about what happens before V1 is
the whitening theory [9], which states that retina and LGN
serve to flatten the magnitudes of the images on the fre-
quency domain. It was observed that natural images ap-
proximately follow the 1/f law in the frequency domain.
That is, if we apply 2D Fourier transform on a natural im-
age, most of the time we will observe that the magnitude of

each component decreases with increasing component fre-
quency. Supposedly the visual system removes the redun-
dant information by flattening the magnitudes on the fre-
quency domains. Later it was pointed out that this operation
also approximately makes pixel values uncorrelated [10]. In
a recent paper [22] we also noted that this operation regu-
lates the distribution of the inputs to V1 so that the linear
efficient coding algorithm can work more efficiently. We
showed that when ICA is treated as a generative model, the
marginal distributions of the x;’s are zero-mean Gaussians.
Hence the whitening process is “formatting” the inputs for
the ICA procedure.

2.4. After Linear Efficient Coding

A further development in the [22] paper was that by ap-
plying a component-wise nonlinearity to the absolute value
of the s;s (the sign is redundant), one can convert them into
Gaussian distributions, and apply ICA again to obtain an
efficient encoding of the first layer. This process may be
repeated multiple times to obtain a multilayer ICA. We ap-
plied this algorithm to develop a two layer ICA, and the
resulting second-layer basis functions appeared to code for
texture boundaries and corners. In this paper, we stop at
one layer, but apply the nonlinear function to the outputs.
We have found this improves performance over simply us-
ing linear ICA.

The procedure for computing the nonlinearity is as fol-
lows: For each dimension of the layer-1 outputs s;, the cdf
F of ||s;|| is estimated. Then the coordinate-wise activation
function G was defined as:

G(s;) = G(F(lls;1)) 2)

where G denotes the inverse cdf function of a standard nor-
mal distribution. This coordinate-wise activation function
works to discard the signs of layer-1 outputs, and then trans-
form the marginal distributions to be Gaussian distributions.

Here is an intuitive explanation of the activation func-
tions. The layer-1 basis function can be roughly considered
as edge/bar detectors. Taking the absolute values of s; in-
troduces some shift invariance. Figure 3 plots one actual
activation function learned from natural images. As shown
in the figure, the activation function can be roughly divided
into segments. Between zero and the red dots, the activation
function amplifies the ||s;|| values that are highly peaked
near zero from their small range on the x-axis to a large
range on the y-axis. This segment serves to increase the
distance between two ||s;|| values and may help the classi-
fier to distinguish their differences. When the |s;|| value is
bigger than where the red dot indicates, few ||s;||’s are for
any one image, and the activation function flattens the s;’s.
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Figure 3. One actual activation function G - F learned from natural
image patches. The red dot indicates where F(||s;||) = 0.5, i.e.,
half of the s;’s responses in natural image patches are smaller than
this value.

3. Methods
3.1. Learning Visual Features

We apply the sparse coding algorithm [17] on ten 512 X
512 natural images available from Olshausen’s homepage.
The images are whitened using the whitening filter de-
scribed in [16], whose matlab code is also available from
Olshausen’s homepage. As discussed earlier, this whiten-
ing process is supposed to simulate the processing in retina
and LGN. We normalize each image to have zero mean and
unit variance. After whitening, six pixels off the boundary
are discarded to avoid boundary effects. Each image is now
500 x 500 in size. We extract all the 2, 430, 490 8 x 8 possi-
ble image patches, subtract the local mean from each image
patch, then calculate the PCA projection matrix. Now each
image patch is represented as a 63 dimensional vector &.
While this does not reduce the dimensionality, it appears
to make the ICA algorithm learn better features. After the
PCA projection, we scale each dimension of Z to have unit
variance.

The sparse coding algorithm is applied on these image
patches. It corresponds to the linear efficient coding model
described in Equation 1, with the following marginal prior:

b
(L+(s5/0))

In our experiments, we set © = 1 and = 0.4. We have
found a relatively wide range of these values all work well.
The variances of the noise € (see Equation 1) is also set to
1.

We initialize the linear mixing matrix A with gaussian
random variables. Then, on each iteration, we randomly
pick 100 image patches, and calculate their PCA projections

p(sj) o 3)

Figure 4. 128 basis functions (i.e. columns of A) learned on 8 x 8
natural image patches. See Section 3.1 for the learning procedure.
Each columns of A is reconstructed to the original image space by
reversing the PCA projection.

Z1,...,T100- The mixing matrix A is then updated by:
. 100
A=A+ 100 Z(x A3))5, 4)

where 7 denotes the learning rate, s; is the most probable
underlying signal given the observation #; and the current
mixing matrix A (see [17] for the inference algorithm). Af-
ter each update, the columns of A are normalized to unit
length to speed up the learning process. We repeat this pro-
cess for 100, 000 iterations with n = 0.1, followed by an-
other 100, 000 iterations with n = 0.01.

To evaluate the effect of overcompleteness (i.e., the ratio
between the dimensionality of § and the dimensionality of
Z) on classification performance, we learn three different
sets of features, with the dimensionality of s equal to 64,
128, or 192. Figure 4 displays the basis functions learned
when the dimensionality of 5'is set to 128.

After that, we estimate the cdf function of ||s;|| for each
dimension. This is done by first inferring the underlying
signal representation s for all the 2,430, 490 extracted im-
age patches. We calculate the histogram of ||s;|| with bins
between 0 and 15 and a bin size of 0.0001. The empirical
cdf function of ||s;| is generated from this histogram, and
then fitted by the following function:

Fillsill) = T(ls;ll/7)°,1/6) 5)

where I' denotes the incomplete Gamma function. Figure 5
displays the empirical cdf function of one ||s;|| as well as
the fitted cdf function, when the dimensionality of s equals
128. This activation function converts the highly sparse
distribution learned via ICA into a Gaussian distribution,
which in previous work we have used to apply ICA again.
However, in this work, we simply investigate the utility of
this nonlinear function applied to one layer of ICA features.

After the linear mixing matrix A and the nonlinear acti-
vation functions G; = G(F;) are learned from the ten nat-
ural images, we apply them on various classification tasks
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Figure 5. The empirical cdf curve of one ||s;|| as well as the fitted
cdf function. The fitted parameters for this curve are 6 = 0.7027
and 7 = 0.1119.

without any adjustment of the parameters. The classifica-
tion performance based on these features outperforms many
recently proposed computer vision techniques, even if we
just use a single layer classifier.

3.2. Experiments on Yale Face Dataset

We first test the features on the Yale dataset [4], which
contains 165 gray-scale images of 15 individuals. Each in-
dividual has 11 images. The manually aligned and cropped
images can be downloaded from the homepage of the first
author of reference [7]. We downloaded the 64 x 64 pro-
cessed images, and then downscaled the images to 32 x 32
using the imresize matlab function. This procedure does not
suffer from the pixellation artifacts that occur in the 32 x 32
images provided on the website. Then we whitened each
image using the whitening filter discussed in Section 3.1
and normalize each image to have zero mean and unit vari-
ance. For each image, we extract all the 625 8 x 8 im-
age patches, and infer the most probable s for each image
patch. After that, we apply the nonlinear activation G'; on
each dimension of s;. When the dimensionality of 5"is 64
(1 times overcomplete), each facial image is represented by
a 625 x 64 = 40,000 dimensional vector. For 2 times over-
completeness, each image is represented by a 80,000 di-
mensional vector, efc.

We followed the method in [7] to randomly divide the
images into the training and the testing sets. For each ex-
periment, we randomly select M = 2,3, ..., 8 images from
each individual as the training images, and use the rest as
testing images. For each setting of M, we tested 50 random
splits.

When the training set and the testing set are selected,
we take the 40,000 dimensional representation (for 1 times
overcomplete, efc.) and reduce its dimensionality using

D [M=2] M=3 ]| M=4 | M=5 | M=6 | M=7 | M=8

64 28.86 | 19.55 | 13.71 | 9.96 | 7.71 | 6.43 | 4.93
128 27.13 | 17.78 | 12.04 | 8.36 | 6.96 | 5.50 | 4.04
192 27.11 | 17.38 | 11.71 | 8.16 | 627 | 5.07 | 3.82
Ref [7] | 424 | 27.7 | 222 | 183 | - - -
Ref [12] . . . 132 | - - -
[7)update | 37.5 | 255 | 193 | 147 | 123 | 103 | 8.7

Table 1. Recognition error rates (in percentage) on the Yale
dataset, using G(||s||) as features. D denotes the dimensional-
ity of 5. M denotes the number of training images selected from
each individual.

PCA. The number of principal components are chosen so
that 95% of the variance is captured. For example, as M
increases from 2 to 8, the number of principal components
using this criterion range from 27 to 105. We then use the
projected training examples to train a one layer network us-
ing the softmax activation function. The network is updated
for 1,000 epochs or until the network weights have con-
verged, using the scaled conjugate gradient algorithm (the
glm + netopt function in the netlib library implement this
algorithm). The test images are projected using the PCA
projection matrix trained on the training images, and fed to
the one layer network.

Table 1 lists the recognition performance on the test im-
ages, with different overcompleteness and different num-
bers of training images from each individual. The results
are extremely good given the small number of training ex-
amples. Results reported in CVPR2007 in [7] and [12] are
given for comparison. We noticed that on the homepage of
the first author of reference [7], they reported new results.
These are given on the last line. However, there is still an
obvious gap between their results and our results, and our
results are based on first layer features not adapted to the
training set.

3.3. Experiments on ORL Face Dataset

The Olivetti Research Laboratory (ORL) database[20]
contains 400 face images of 40 persons, with 10 per per-
son, taken at different time, under different lighting con-
ditions, and with different facial expressions. We down-
loaded the manually aligned and cropped 64 x 64 images
from the homepage of the first author of reference [7], and
then downsampled them to 32 x 32 size using the imresize
matlab function. We implemented the same experiments as
on the Yale datasets. We randomly select M = 2,3,...,8
images per person for training and the rest for testing. The
average recognition error rates are reported in Table 2, with
the results from two CVPR 2007 papers for comparison.



D [ M=2 [M=3[M=4 [ M=5 [ M=6 | M=7 | M=8

64 1599 | 8.64 | 508 | 291 | 2.14 | 140 | 1.10
128 1546 | 820 | 475 | 270 | 1.78 | 1.20 | 0.90
192 15.11 | 8.02 | 446 | 243 | 1.78 | 1.12 | 0.90

Ref [7] 14.8 7.7 42 2.8 - -
Ref[12] - - - 3.0 - -

Table 2. Recognition error rates (in percentage) on the ORL
dataset, using G(||s||) as features. D denotes the dimensional-
ity of 5. M denotes the number of training images selected from
each individual. The last two rows are from CVPR 2007 papers

D M=10 [ M=20 | M=30 [ M=40 | M=50
64 1262 | 873 | 726 | 649 | 592
128 1220 | 820 | 6.84 | 6.08 | 5.52
192 1205 | 812 | 673 | 593 | 532
Invar-SVM | 149 | 89 | 78 | 58 | 55

Table 3. Recognition error rates (in percentage) on the MNIST
dataset, using G(||s||) as features. D denotes the dimensionality
of 5. M denotes the number of training images selected from each
digit. The bottom row displays the results reported in [23].

3.4. Experiments on MNIST Digit Dataset

In this experiment, we apply our features derived from
natural scene statistics to the MNIST handwritten digits
dataset. The MNIST dataset has a training set of 60,000
examples and a test set of 10,000 examples. The digits
have been size-normalized and centered in 28 x 28 images.
We downsampled each image to 18 x 18 size by the im-
resize matlab function. Each image is whitened and nor-
malized to have zero mean and unit variance. 121 8 x 8
image patches are extracted from each image for the one
times overcomplete case, so each image is represented by
a 121 % 64 = 7744 dimensional vector. We also give the
results for two and three times overcomplete.

We randomly select M = 10, 20, 30, 40, 50 training ex-
amples for each digit from the training dataset. For each M,
we try 40 different sets of training examples. As with the
experiments on face datasets, we apply PCA to reduce the
dimensionality while retaining 95% of the variance, and use
a one-layer softmax classifier. We test the classifier on the
10, 000 test images, and the average recognition error rates
are reported in Table 3.

These results are comparable to recently proposed com-
puter vision techniques. For example, in NIPS2007, the au-
thors of [23] reported how to learn a set of kernels which are
invariant to 20 transforms: 1-pixel and 2-pixel shift in 4 and
8 directions, rotations by +10 degrees, scaling by £0.15,
and shearing in vertical or horizontal axis by +0.15. SVM

based on these kernels yields results shown on the bottom
row of Table 3. In CVPR2007, the authors of [19] trained
a four-layer network to extract visual features. They used
all the 60, 000 unlabeled training examples to train the net-
work, and then use a subset of labeled training examples to
train a two-layer neural network, using the visual features
extracted by the four-layer network. They reported an av-
erage error rate of 7.18% on the test dataset, using just 300
training examples, as we do here. However, they achieved
much better results when they used more training examples
(less than a percent). It remains to be seen how well we can
do with more training examples.

3.5. Why This Works

Our above experiments raise an interesting question:
why should these visual features help classification tasks
in general? We have noticed that when we apply the vi-
sual features to the images, we in fact map the image to
a much higher dimensional space nonlinearly. The nonlin-
earity comes from two operations. First, given input &, the
optimal §'is inferred by minimizing the reconstruction error
(¥ — A3)? while minimizing the sparsity penalty log p(3).
As a result, §is a nonlinear function Z when D > d. In-
stead of mapping to a linear subspace of the higher dimen-
sional space, as a linear transform WZ would do, the in-
ference process spreads the optimal § in the high dimen-
sional space. Another nonlinearity comes from the acti-
vation function G, (||s;||) we apply on each dimension of
5. We hypothesize by mapping the data to a higher dimen-
sional space, we can benefit from what kernel SVM’s have
benefited from — the samples are much more likely to be lin-
early separable. However, since the nonlinear functions are
learned from natural images and capture some meaningful
structure, we suffer little from the problem of over-fitting.

To evaluate the utility of the nonlinear activation func-
tion G, we repeat the experiments on the Yale dataset. The
experiment settings are the same as described in Section 3.2,
except that now we only keep the absolute values of 5 with-
out applying the nonlinear activation functions. As shown
in the table, the nonlinear activation functions make a sig-
nificant difference in the final classification performance.

We also tried using Gabor magnitudes (3 scales and 8
orientations, followed by PCA), as in previous work [8] in-
stead of our ICA features with the nonlinear activation func-
tion. The results were worse than Cai et al.’s results, and
much worse than our results. Hence the ICA features, with
the nonlinear activation function, are an important part of
the model.

Another observation in all the tables is that generally the
higher the dimensionality, the better the recognition perfor-
mance. This accords with our hypothesis that we are bene-
fitting from mapping the data to a higher dimensional space
nonlinearly. Would this explain the observation that the pri-



D [ M=2 | M=3 [ M=4 [ M=5 | M=6 | M=7 | M=8

64 | 3692 | 26.63 | 1937 | 15.24 | 12.77 | 11.00 | 10.22
128 | 36.00 | 25.72 | 18.65 | 13.82 | 11.87 | 9.87 9.02
192 | 34.00 | 23.78 | 16.72 | 12.49 | 11.04 | 8.37 8.31
64 | 28.86 | 19.55 | 13.71 | 9.96 7.71 6.43 4.93
128 | 27.13 | 17.78 | 12.04 | 8.36 6.96 5.50 4.04
192 | 27.11 | 17.38 | 11.71 | 8.16 6.27 5.07 3.82

Table 4. Recognition error rates (in percentage) on the Yale
dataset, without using the nonlinear activation functions. The bot-
tom three rows replicate the first three of Table 1 to ease compari-
son.

D [ M=2 [ M=3 [ M=4 [ M=5 | M=6 | M=7 | M=8

64 | 48.73 | 36.73 | 30.72 | 24.22 | 19.73 | 16.27 | 13.69
128 | 46.46 | 34.30 | 28.93 | 22.13 | 17.81 | 13.97 | 11.69
192 | 4578 | 33.92 | 2834 | 21.16 | 17.41 | 13.63 | 11.69

Table 5. Recognition error rates (in percentage) on the Yale
dataset, using G(||s||) as features. However, now we are directly
using the 32 x 32 version images downloaded from the first author
of [7].

mary visual cortex constitutes an about 100 times overcom-
plete representation of the sensory inputs? Will the per-
formance stop improving or even start to degenerate as we
keep increasing the dimensionality of 5?7 We leave these
questions for future work.

3.6. When It Will Fail

As discussed at the beginning of this paper, the whole
idea of the universal visual feature hypothesis is based on
the observation that visually quite different images share
similar local statistical structures. Hence, the method will
greatly fail when the local statistics of the images under
consideration are very different from the images on which
the visual features are learned. This may occur when some
artificial statistics are introduced during the image capture
process. This is exactly why we always make the pixel val-
ues of each image to have zero mean and unit variance.

Here we show how the method will seriously fail. We
download the processed 32 x 32 Yale face images from
Ref [7]’s first author’s homepage. And then apply the same
procedure as described in Section 3.2. That is, everything
is the same except that we are directly using the 32 x 32
version images, instead of using the 64 x 64 version fol-
lowed by a downsampling operation. As shown in Table 5,
the performance degenerates greatly.

It turns out that the software the authors used to down-
sample the images introduced pixellation effects, as shown
in Figure 6. As the original images on which we have

learned the visual features contains are smooth outdoor
scenes, the pixellation errors make the images being tested
to have quite different local statistical structure. This ef-
fect, however, can be easily counteracted by simply down-
scaling or blurring the images slightly. This is also why we
down-scaled the handwritten digits from 28 x 28 to 18 x 18
size.

Figure 6. The pixellation effect. The left figure is the original 32 x
32 version. The right figure is generated by down-scaling the 64 X
64 image to 32 x 32 using the imresize matlab function.

This, however, raises an interesting question — how to
avoid/remove artificial statistics introduced during image
capture? For the human visual system, there is a unique
set of image capturing devices. Any artificial statistics in-
troduced by these devices will be applied to future testing
images, and should not cause much trouble. However, for
a computer vision system in which the images are captured
using different devices, artificial statistics introduced dur-
ing image capture might be a serious problem. Although
in our experiments we found that simply shrinking/blurring
the images will suffice to yield good performance, how to
detect and remove artificial statistical structures is still an
important research topic in the study of these universal vi-
sual features.

4. Discussion

In this work, we have shown how to learn a set of visual
features from randomly collected images, and apply these
features on different datasets without special adjustment of
the features. These ideas are inspired by the structure of
human visual system, and based on the observation that vi-
sually different images share similar local statistical struc-
tures. We show that these features help to yield recognition
performance comparable to state-of-the-art computer vision
techniques.

There is a great deal of recent work using deep networks
for recognition [11, 21]. The work we report here suggests
that shallow but wide networks may be sufficient for recog-
nition. This observation is consistent with another recent
article using shallow networks with a nonlinear activation
function for object recognition [18].

However, as we have shown in Section 3.6, we need to
apply this technique with caution. Although we showed in
the paper that simply shrinking the images being tested will
help to remove some artificial statistics, it remains an in-
teresting question how to automatically detect and remove



such structures.

We feel that the best way to interpret the linear efficient
encoding hypothesis as instantiated by ICA is that it is try-
ing to provide a set of universal visual features. This is plau-
sible because globally different visual stimuli in fact share
similar local statistical structure. This is beneficial because
all we need to train the features is a set of natural images.
These images do not need to be labeled, and apparently,
they do not need to share similar properties, as evidenced
by the application of our approach to hand written digits.
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