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Abstract 
Perceptual categorization at the basic level is faster than 
categorization at more superordinate or subordinate 
levels (Rosch et al, 1976).  For categories of perceptual 
expertise, this basic-level advantage is attenuated such 
that subordinate levels are categorized as fast as the 
basic level (Jolicoeur et al, 1984).  But, what does it 
mean to be fastest?  One explanation is that levels of 
abstraction that are categorized faster are processed 
first.  We tested this "fastest means first" hypothesis by 
contrasting the time-course of basic- and subordinate-
level categorization for novice and expert categories 
with a signal-to-respond task.  Results indicated no 
qualitative differences in the time courses of perceptual 
decisions for novice and expert categories, nor was 
there evidence for a basic-level stage preceding a 
subordinate-level stage.  Simulations with an extant 
object categorization model investigated how 
seemingly qualitative differences between novice and 
expert categorization can be accounted for with 
quantitative changes to model parameters over learning.  
Together, the behavioral data and simulation results 
suggest that fastest does not necessarily mean first in 
perceptual categorization.  
Keywords: categorization; basic level; time-course; cognitive 
modeling 

Introduction 
The human visual system allows us to rapidly and 
accurately recognize objects in the world around us. At a 
glance, we can detect that an object is there, categorize what 
kind of object it is, and identify the object with a unique 
name. An important and long-standing question about object 
processing concerns when these different levels of 
abstraction become available to the perceiver. Given an 
image of a dog, how much time is required before we know 

that the image contains an object, or that this object is an 
animal, a dog, or a golden retriever? Some of these 
perceptual decisions are made more quickly than others 
(Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). But 
does fastest mean first? Are certain perceptual decisions 
made prior to others during visual object recognition 
(Palmeri, Wong, & Gauthier, 2004; see also Grill-Spector & 
Kanwisher, 2005)? 

Rosch et al. (1976) found that participants were faster at 
verifying objects at a basic level (e.g., dog) than more 
superordinate (e.g., animal) or subordinate (e.g., Poodle) 
levels of abstraction. While this basic-level advantage is 
robustly found across many object categories, situations 
exist where this effect is significantly attenuated. For 
example, with objects of perceptual expertise (Tanaka & 
Taylor, 1991), subordinate-level categorization occurs as 
quickly and as accurately as basic-level categorization. This 
finding has sometimes been characterized as an entry-level 
shift (Jolicoeur, Gluck, & Kosslyn, 1984); for novice 
categories, the basic level is the entry level, but for expert 
categories, more subordinate levels become the entry level. 

But what does it mean for a particular level of abstraction 
to be the “entry” level? One simple and straightforward 
possibility is illustrated in Figure 1. In this box-and-arrow 
model, objects from novice categories, after low-level visual 
processing, are categorized first at the basic level (the entry 
level) before being categorized at more subordinate levels. 
Basic-level categorization is faster than subordinate-level 
categorization because basic-level categorization occurs 
before subordinate-level categorization – fastest means first. 
But for objects from expert categories, there is an entry level 
shift, whereby objects are categorized at subordinate levels 
of abstraction without first being categorized at the basic 
level. 

 



 
 

Figure 1: Descriptive model of basic-level advantage (top) 
and entry-level shift (bottom).   
 

The box-and-arrow model is intuitively plausible and it 
accounts for the basic-level advantage as well as the entry-
level shift with expertise. However, most extant 
computational models of object recognition and perceptual 
categorization propose no such preliminary basic-level stage 
of processing.  Instead, decisions about the basic-level 
category or subordinate-level identity of an object are made 
after perceptual processing and access to knowledge 
representations. For example, the EBRW model of 
perceptual categorization (Nosofsky & Palmeri, 1997; 
Palmeri, 1997) assumes that the perceptual representation of 
an object is used to probe memories for past experiences 
with that object. These probes generate evidence for a 
particular categorization of an object, whether at a basic 
level or subordinate level, and evidence drives a random 
walk decision process. The time to make a decision is 
determined by how long it takes this stochastic 
accumulation of evidence to reach a decision threshold, 
which can be influenced by factors such as between- and 
within-category similarity. Similarly, a model of object 
recognition (Joyce & Cottrell, 2004) assumes an object goes 
through stages of Gabor filtering, principal component 
analysis, and a neural network mapping perceptual 
representations onto category labels.  Decisions at different 
levels of abstraction are all driven by trained weights 
leading to output units at the same output layer of the neural 
network.   Another neural network model of object 
recognition (Reisenhuber & Poggio, 2000) assumes a 
hierarchy of information processing that begins with low-
level features, moves to view-based representations, object 
representations, and ultimately category labels. Like the 
other two models, perceptual decisions at different levels of 
abstractions are all instantiated at the same output layer of 
the network. None of these models have an explicit basic-
level stage of processing. If there is truly a basic-level stage 
of processing – as suggested by some interpretations of 
entry level phenomena – then this would challenge many 
current computational models of perceptual categorization 
and object recognition.  

The current work attempts to unravel the time-course of 
basic-level categorization and subordinate-level 

identification. Does fastest mean first? Is basic-level 
categorization performed before subordinate-level 
identification, and does that change with perceptual 
expertise?  We compared categorization at basic and 
subordinate levels for novice categories (birds and dogs) 
and an expert category (faces).  Normally-functioning adults 
can be considered face experts (Carey, 1992; Carey & 
Diamond, 1994; Gauthier & Tarr, 1997). Whether face 
expertise is qualitatively different from other forms of 
expertise is hotly debated (Kanwisher, 2000; Tarr & 
Gauthier, 2000). For the purposes of the present work, we 
begin with the finding that faces show the same qualitative 
entry-level shift as other categories of expertise (Tanaka, 
2001; Tanaka & Taylor, 1991); specifically, pictures of 
faces are identified uniquely as quickly as they are 
categorized as people, much in the same way that for bird 
experts pictures of birds are identified as quickly as they are 
categorized as birds. We acknowledge we are confounding 
expertise with category in this discussion. But as a first pass, 
using faces for an expert category is far more efficient than 
recruiting bird or car experts or training people to become 
experts. 

Our first experiment attempts to replicate the entry-level 
shift with faces reported by Tanaka (2001). The second 
experiment uses a signal-to-respond (STR) technique to 
examine the detailed time-course of basic-level 
categorization and subordinate-level identification. STR 
probes decisions at various time-points after stimulus onset. 
Of particular interest is whether we can observe a delay in 
the initial buildup of subordinate-level decisions relative to 
basic-level decisions, a potential temporal marker for a 
delayed stage of subordinate-level categorization. Finally, 
we consider the results from these experiments from the 
perspective of the EBRW model.      

Experiment 1 
The first experiment attempts to replicate the entry-level 
shift for faces reported by Tanaka (2001).   

Methods 
Participants Fifteen Vanderbilt University undergraduates 
participated in two sessions for course credit or monetary 
compensation.    

 
Stimuli Images of objects from three categories (faces, 
dogs, birds) were used.  Each category consisted of about 
320 images from eight different subordinate-level 
categories: faces - Arnold Schwarzenegger, Jennifer 
Aniston, Britney Spears, Nicole Kidman, George W. Bush, 
Mel Gibson, Hillary Clinton, Bill Clinton; dogs - sharpei, 
beagle, chihuahua, chow chow, golden retriever, german 
shepherd, weimaraner, poodle; birds - robin, dove, crow, 
hawk, duck, penguin, ostrich, owl.  Images were presented 
in grayscale and subtended approximately 5.2° x 5.2° of 
visual angle. 

 
Procedure Participants performed in a speeded category 



verification task. Participants were seated approximately 60 
centimeters from the computer display.  Each trial began 
with a basic- or subordinate-level category label displayed 
for 1000 ms, followed immediately by the test image. The 
image remained on the screen until the participant 
responded.  Participants responded by hitting a “yes” key if 
the label matched the object shown in the test image, and a 
“no” key if it did not.  Half of the category verifications 
were made at the basic level (face, dog, or bird), and half 
were made at the subordinate level (Jennifer Aniston, 
sharpei, robin, etc.). On true trials, the category label and the 
object in the test image matched.  On false trials of basic-
level trials, another basic-level category was shown (e.g., a 
label BIRD for the image of a german shepard). On false 
trials of subordinate-level trials, and another category label 
from the same basic-level category was displayed (e.g., a 
label BEAGLE for the image of a german shepherd); for 
faces, the label on false trials was a person of the same 
gender as the one depicted in the image. Participants were 
instructed to respond as quickly and accurately as possible.  
Participants completed a short practice session before 
beginning the experimental trials; the practice stimuli was 
drawn from other basic-level categories.  Each session 
consisted of 960 trials and lasted approximately one hour.   

Results 
Verification response times and accuracy for true trials from 
each of the object categories are shown in Figure 2.  A 
basic-level advantage was found for birds and dogs but not 
faces.  Planned comparisons were conducted on the 
difference between the basic- and subordinate-level 
verifications.  For both birds and dogs, responses were faster 
and more accurate for basic than subordinate verifications 
[birds – RT t(14) = 2.91, accuracy t(14) = 3.93; dogs –RT 
t(14) = 2.29, accuracy t(14) = 5.04].  For faces, no 
significant difference was found for either response time 
[t(14) = 1.81, p = 0.10] or accuracy [t(14) < 1.0].  
 

 
 

Figure 2: RT and accuracy for speeded verification.  White 
and gray bars represent basic- and subordinate-level 
performance, respectively.  Asterisks (*) represent 
significant differences (p < 0.05) between basic- and 
subordinate-level performance and  error bars represent 95% 
confidence intervals. 

Experiment 2 
Replicating Tanaka (2001), in Experiment 1, we observed a 

basic-level advantage for novice categories (birds and dogs) 
but not for an expert category (faces). Are these results a 
consequence of information critical for verifying a basic-
level category being available before information critical for 
verifying a subordinate-level category, at least for novice 
categories?  To answer this question, we contrasted the 
time-course of categorizing expert and novice objects at 
basic and subordinate levels using a signal-to-respond 
(STR) task (Corbet & Wickelgren, 1978; Dosher, 1981; 
Hintzman, Caulton, & Curran, 1994). This task uncovers the 
relationship between performance and processing time by 
varying the amount of time the participant has to process a 
test item in order to make a decision.  We used the same 
category verification tasks used in Experiment 1, but after 
the image was presented to be verified (at basic or 
subordinate levels), a tone signaled when the participant was 
required to make a response. Tones – signals to respond – 
were presented at varying times after stimulus onset. 
Varying the lag from image onset to signal allows us to 
examine how verification accuracy changes over time.  To 
quantitatively compare the temporal dynamics of the 
functions associated with basic- and subordinate-level 
categorization, d’ values were fitted with the following 
exponential function (Wickelgren & Corbett, 1977), a 
function used widely to analyze STR data, 

)δ)β(teλ(1d' −−−= , 
where t is the lag until the response signal plus the response 
time after the signal, λ is the asymptote, β is the growth rate, 
and δ is the intercept.  The last three parameters can be 
mapped onto particular elements of information processing.  
The asymptote represents an expected maximum accuracy 
for the task given unlimited time, the growth rate represents 
the rate at which relevant information is extracted, and the 
intercept represents when during the time course of 
processing begins to grow above chance.  

In addition to simply fitting the exponential functions to 
data, we also tested hypotheses by fitting special cases of 
the function. For example, we could test whether the 
intercept for basic and subordinate decisions is the same by 
constraining the asymptote to be identical for basic and 
subordinate decisions but allowing the growth rate and 
asymptote to vary. Indeed, this is a key prediction we will 
test. We then contrast the fit of the “full model”, one with 
three parameters for basic and three parameters for 
subordinate, with a “restricted model”, such as one with one 
common intercept parameter for both basic and subordinate 
but separate growth and asymptote parameters for basic and 
subordinate. If the restricted model fits significantly worse 
than the full model, we reject the hypothesis, such as the 
hypothesis that the intercept is the same for basic and 
subordinate decisions. The specific approach we used to do 
this statistical model testing is described, for example, in 
Dosher (1981).  

Methods 
Participants Five of the participants that participated in the 



first experiment completed sixteen sessions of this 
experiment and were paid $12 per session.    

 
Stimuli The same stimuli were used in experiments 1 and 2. 
     
Procedure Participants completed a category verification 
task like Experiment 1, but with the inclusion of a signal-to-
respond manipulation. On each trial, a category label was 
displayed for 1000ms, then a premask was displayed for a 
variable duration, followed by the presentation of the 
stimulus image for 200ms, followed by a postmask.  An 
auditory signal to respond was presented to the participants 
after a variable duration (12, 24, 35, 47, 94, 188, 376, 753, 
or 1506 ms) from image onset.  Masking was used to limit 
the amount of perceptual processing in order to make the 
task more difficult than unmasked viewing; the same limits 
from masking were imposed at all signal-to-respond levels. 
As in Experiment 1, participants verified the match or 
mismatch between the category label (basic or subordinate) 
and object in the stimulus image. But they could only 
respond after hearing the auditory signal.  A warning 
message was presented if the participants responded before 
the signal or if the response time after the signal was smaller 
than 180ms or greater than 350ms.  Participants responded 
by pressing keys marked as “yes” and “no” on a keyboard.  
Each session consisted of 864 trials and lasted 
approximately 1 hour.    

Results 
The behavioral time courses along with the exponential 
curve fits from each object category are shown in Figure 3.  
The average curve fit parameters from each of the object 
categories are also shown in Figure 3.  Planned comparisons 
testing for difference in asymptote, growth rate, and 
intercept parameters between basic- and subordinate-level 
decisions were conducted.  For objects from novice 
categories (birds and dogs), no significant difference was 
observed for the intercepts [t(4) < 1].  For birds, the 
asymptote [t(4) = 2.87] and the growth rate [t(4) = 6.95] was 
significantly higher in the basic-level condition.  For dogs, a 
marginally significant difference was observed in growth 
rate only [t(4) = 2.26, p = 0.08]. For objects from the expert 
category (faces), planned comparisons revealed a marginally 
significant difference in the growth rate [t(4) = 2.56, p = 
0.06]. Interestingly, a small but significant difference in 
intercept [t(4) = 2.88, p < 0.05] was observed, with the 
basic-level condition having the smaller intercept. Note that 
this is entirely opposite to what a “fastest means first” 
hypothesis would predict: It was the expert category that 
demonstrated a significant difference in the intercept for 
basic vs. subordinate decisions, not the novice category.    

These conclusions were also confirmed by comparing the 
fits of the full exponential model (independent curves for 
basic and subordinate decisions) with those of various 
restricted models. For objects from novice categories (birds 
and dogs), the restricted models with equal intercepts and 
asymptotes fit as well as the full six parameter model.  Only 

the restricted model with equal growth rates fit worse than 
the full model.  For objects from the expert category (faces), 
the restricted model with equal asymptotes fit as well as the 
full six parameter model.  The restricted models with equal 
growth rates or intercepts fit worse than the full model. 

 

 
 

Figure 3: Behavioral time course data (circles and crosses), 
exponential curve fits (gray lines), and parameters values 
from exponential fits for STR task (text box).  Performance 
(d’) is plotted along the y-axis and reaction time plus lag 
before the signal is on the x-axis.  Average parameter values 
are shown in the tables with significant differences labeled 
at p < 0.05 (**) and p < 0.10 (*).   

Discussion 
Examination of the results in Figure 3 offers some 
interesting observations.  Across novice and expert 
categories, the time-courses of basic- and subordinate-level 
categorization are qualitatively quite similar.  This suggests 
that differences between novice and expert object 
processing may not be due to qualitatively different 
processing mechanisms, but rather quantitative differences 
in processing efficiency (Palmeri et al., 2004). Specifically, 
there is no delay in the growth of subordinate-level 
decisions compared to basic-level decisions for novice 



categories. Basic-level decisions may be made faster than 
subordinate-level decisions, but faster does not mean first. 

One puzzling result was that there was a delay observed 
for faces, our expert category: basic-level decisions had an 
earlier intercept than subordinate-level decisions.  In this 
case, there is no difference in overall response time in the 
speeded task (i.e., there is an entry-level shift), but there is a 
small but significant difference in the onset of basic-level 
decisions compared to subordinate-level decisions from 
chance. It may be that basic-level decisions – is there a 
“face” in the picture – could be driven by some kind of low-
level image properties available very early in visual 
processing, but that is entirely speculation.  Whatever the 
cause, this interesting effect deserves further attention in 
future studies. But more importantly, this finding, however 
puzzling, demonstrates that our task has the statistical power 
to detect a small but significant intercept difference; it just 
detected that difference in an unexpected condition.    

Simulations 
The lack of an intercept difference between basic- and 
subordinate-level categorization, at least for novice 
categories, is consistent with most categorization and object 
recognition models in that these models do not propose a 
basic-level stage of processing. But why is there a 
significant response time difference between basic- and 
subordinate-level categorizations for novice categories that 
seems to disappear with perceptual expertise? In other 
words, why is there an entry-level shift? Models like EBRW 
do not propose any qualitative reconfiguration with 
learning. Instead they assume gradual quantitative changes. 
Can these quantitative changes give rise to qualitatively 
different data patterns across novice and expert 
categorization?    

To begin to answer this question, we simulated the 
EBRW model using a highly simplified instantiation of the 
basic and subordinate categories used in our experiments. 
According to EBRW, objects are represented perceptually 
as points in a multidimensional psychological space. Like 
many other categorization models, EBRW does not specify 
the details of perceptual processing, but multidimensional 
representations of this sort have been used in extant object 
recognition models (e.g., Edelman, 1999). To keep things as 
simple as possible, we assumed a two-dimensional space. 
As shown in Figure 4a, one basic-level category (black 
points) was represented as a cluster of points in space, with 
parameter sw specifying the within-category similarity. 
Again, keeping these simulations as simple as possible, we 
only assumed one other basic-level category (gray points), 
with the between-category similarity specified by sb 
(Nosofsky, 1988). We assumed that all of these points had a 
preexisting memory representation, with an associated 
basic- and subordinate-level label. In these simulations, we 
did not model any individual exemplar similarity within a 
single subordinate-level category (either different instance 
of robins or different images of the same person). Our point 
was not to model all of the nuances of the experimental 

situation, or to quantitatively fit data, but simply to provide 
a theoretical illustration.  

According to EBRW, a presented object activates stored 
memory representations according to the similarity of its 
perceptual representation to representations stored in 
memory. Specifically, the similarity between object i and 
stored exemplar j is given by sij = exp(-c·dij), where dij is the 
psychological distance between i and j and c is a memory 
sensitivity parameter. When c is large, representations are 
highly distinct. Evidence for a basic-level category is based 
on how similar the object is to the target category versus the 
other category. Evidence for a subordinate-level category is 
based on how similar the object is to a particular unique 
object compared to other objects. These evidences drive a 
stochastic random walk process where an accumulator 
wanders between a positive (“yes” decision) and a negative 
(“no” decision) boundary. A response is given when a 
response boundary is reached. Response time is given by 
this time plus a constant residual time for perceptual 
processing and motor responses (TR).  

Parameters of the simulations include within- and 
between-category similarity (sw and sb, respectively), the 
response boundaries (Kyes and Kno), the residual time (TR), 
and the sensitivity parameter (c). As a simple first step, we 
assumed that novices would have a smaller value of c 
(lower sensitivity) than experts (see Palmeri et al., 2004). It 
may be interesting to note that when modeling amnesia, 
Nosofsky and Zaki (1998) assumed a smaller value of c for 
amnesic individuals compared to nonimpaired controls. So, 
in this context, where brain damage can cause impaired 
memory sensitivity, expertise can cause improved memory 
sensitivity. The qualitative predictions of EBRW remain the 
same across a wide range of parameter values. 

 

 
 

Figure 4:  (a) Psychological space for EBRW simulations.  
Parameters sb and sw specify similarity between basic-level 
categories and subordinate-level categories respectively.  (b) 
RT and accuracy predictions from simulations.  A basic-
level advantage and entry-level shift is accounted for with 
only a quantitative change in the sensitivity parameter. 



Results of the simulations are shown in Figure 4b.  With 
low sensitivity (novice categorization), a basic-level 
advantage is predicted for both RT and accuracy.  But with 
high sensitivity (expert categorization), the basic-level 
advantage is eliminated (note that we made no attempt to 
scale the RT predictions to the observed range). So, by only 
adjusting the sensitivity parameter of the model, a 
quantitative change over learning, the standard basic-level 
advantage is seen for novice categories and the entry-level 
shift is seen for expert categories.  This brief glimpse at 
predictions of EBRW demonstrate how extant 
categorization models can account for qualitative 
differences in categorization performances at different 
levels of abstraction across expertise without the need to 
propose separate stages for basic- and subordinate-level 
categorization (see also Joyce & Cottrell, 2004).  

Conclusions 
The results of this study suggest that fastest does not 
necessarily mean first when it comes to basic- and 
subordinate-level categorization. While categorization of 
novice categories is faster at the basic than subordinate level 
in a speeded category verification task, no qualitative 
difference was seen in the time-course of decisions in a 
signal-to-respond paradigm. Our simulation modeling 
provided a hint at how current categorization models can 
account for the basic-level advantage and the entry-level 
shift through quantitative changes of parameters without 
qualitative changes in processing.    
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