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Abstract

We present a Bayesian version of Lacroix et al.’s natural in-
put memory (NIM) model of saccadic visual memory (Lacroix,
Murre, & Postma, 2006). Our model uses a cognitively plau-
sible image sampling technique that provides a foveated repre-
sentation of image patches. We conceive of these memorized
image fragments as samples from image class distributions and
model the memory of these fragments using kernel density
estimation. Using these models, we derive class-conditional
probabilities of new image fragments and integrate individ-
ual fragment probabilities to classify images. Our Bayesian
formulation of the model extends easily to handle multi-class
problems. We validate our model by demonstrating human lev-
els of performance on a face recognition memory task and high
accuracy on multi-category face and object identification.

Introduction
Human visual perception begins with saccades, a small num-
ber of local, foveated patches sampled from a visual scene.
In order to perceive all parts of a visual scene with great acu-
ity as well as to maintain neural activation in the visual cor-
tex, we repeatedly foveate different areas of the scene, con-
centrating fixations on the parts that are most salient or task-
relevant (Yarbus, 1967). Not only is our sampling of visual
objects fragmented in space and time, the sequence of sac-
cades (scan path) we follow is unlikely to be repeated in fu-
ture exposures to the same object or object class (Henderson,
Williams, & Falk, 2005). Hence, simple exemplar matching
of information from new saccades to stored memories can-
not be relied upon to account for human capacities for object
recognition.

Lacroix et al. (Lacroix, Murre, Postma, & Herik, 2004;
Lacroix et al., 2006) have proposed the Natural Input Mem-
ory (NIM) model to account for humans’ ability to recognize
faces.1 The model is in the mathematical psychology tradi-
tion, but is unusual for this sort of model in that (a) it uses
actual facial images as input, and (b) it is based on the idea of
storing saccade-based face fragments, rather than whole face
exemplars. The model’s memory is reminiscent of a kernel
density estimator, but differs in important details in the way
the estimates from individual fragments are combined. In this
paper, we present a Bayesian version of the NIM model that
uses näıve Bayes to combine the likelihood estimates from
individual fragments. We further extend the model to multi-
class visual memory tasks, and to use a variety of kernels
for density estimation. Our model, which we call NIMBLE

1Face recognitionrefers to the ability to discriminate previously
seen faces from novel faces, based on a study list. In contrast,face
identificationor person identificationrefers to the ability to identify
face images as particular individuals.

(for NIM with Bayesian Likelihood Estimation), achieves hu-
man levels of performance on a standard face recognition task
and can also successfully perform multi-class face and object
identification tasks. Bayesian combination of individual frag-
ment likelihoods outperforms the combination method from
the NIM model in most cases and the new kernels far outper-
form those used in NIM.

We begin by describing our biologically-motivated image
sampling and transformation procedure. We then describe
the NIM model. Next, we explain our Bayesian version of
the model, NIMBLE, including a variety of extensions. We
present human and model performance on visual memory
tasks and conclude the paper with a discussion.

Visual Input Simulation
Fixation Point Selection
Given a current fixation point, the choice of where to sac-
cade to next is driven by a number of external cues including
motion, peripheral complexity and non-visual stimuli (e.g.
sound) as well as top down task-dependent directives such
as attention and expectation. Though many computer mod-
els (Wolfe, 1994; Mozer, Shettel, & Vecera, 2005; Zelinsky,
Zhang, B. Yu, & Samaras, 2005) have been proposed for how
to integrate top-down and bottom-up cues, in this work we
concentrate only on bottom-up salience of static images. We
model the fixation selection process using an interest opera-
tor for determining the scan paths (Yamada & Cottrell, 1995).
This simplified model uses the rotational variance of eight
low-resolution Gabor filter responses to construct a distribu-
tion of the contour complexity (salience) over all pixels in a
given image:

Salience(i, j) =
1
8

8

∑
n=1

(G(i, j,θ)−µG (i, j))2

whereG(i, j,θ) is the response of a Gabor filter with orien-
tation θ centered at pixel(i, j) andµG (i, j) is the mean re-
sponse across all orientations. A similar technique developed
by (Renninger, Coughlan, Verghese, & Malik, 2004) defines
salience as the entropy, rather than the variance, of local im-
age contours.

We convert this salience map into a probability distribution
using the softmax function (Bishop, 1995). A fixation point
is then chosen randomly according to this distribution. Fig-
ure 1 shows a salience map generated in this manner as well
as a sample distribution of fixation points. After each fixa-
tion point is chosen, we reduce the salience around the fixated



point by subtracting a univariate Gaussian, centered at the fix-
ation point, from the salience distribution and renormalizing.
This inhibits repeated fixations of the same location.

Despite the simplicity of this purely bottom-up model, the
resulting scan paths for the face recognition task qualitatively
approximate those observed in humans (Yamada & Cottrell,
1995). The model satisfies three of the five criteria identified
by (Itti & Koch, 2001) for a computational model of visual
attention: it derives perceptual saliency of a fixation point
from the surrounding context, it creates a salience distribu-
tion over the visual scene, and it inhibits return to previously
attended locations. In this paper, we ignore the remaining two
criteria, which concern top-down influences on fixation point
selection. In future work, we intend to incorporate top-down
feedback to direct eye movements, by extending the results
of (Nelson & Cottrell, 2007) to determine the fixations that
would be most useful in enhancing performance on the cur-
rent visual task.

We have tested NIMBLE using various alternative mech-
anisms for computing visual salience. The salience operator
of (Itti & Koch, 2001) results in roughly the same face recog-
nition performance as that of (Yamada & Cottrell, 1995), but
the latter uses the same mechanism for computing salience
(Gabor filters) as for processing images (see next section).
Purely random selection of fixations reduces performance by
30%. Sampling fixations from the Canny edge map of the im-
age reduces performance by 20%. We also tested NIMBLE
using the actual locations of human fixations, which were
recorded from the same face images using an eye-tracker, and
found the resulting memory performance to be comparable to
using the salience operator described.

Retinal / Cortical Image Transform
A fixated patch of an input image undergoes many stages
of neural processing before being stored as a pattern of ac-
tivation in high-level visual cortex. Our biologically-inspired
model of the processing in primary visual cortex (V1) uses the
magnitude responses of Gabor filters at 8 orientations and 4
frequencies (Jones & Palmer, 1987). We transform an image
into the Gabor-filtered domain by calculating the response of
each of these 32 filters at every image pixel. We use Gabor fil-
ter frequencies of116,

1
12,

1
8 and 1

4 cycles/pixel (corresponding
to 8, 102

3, 16 and 32 cycles/face).
Square patches extracted from these Gabor response im-

ages constitute our foveated representation of the fixated
point. The highest-spatial-frequency filter responses corre-
spond to the high-resolution foveated area centered at the fix-
ation point. The responses of the low-frequency filters are
each computed from an area centered at the fixated pixel that
has spatial context greater than that of the foveated patch.
Thus this patch representation includes extra-foveal informa-
tion, corresponding to the low-resolution data from the retinal
periphery.

The size of the extracted patch of filter responses and the
number of patches that the model may examine for each im-
age are experimental parameters that correspond, in human

(a) (b)

Figure 1: (a) An image from the FERET database with 10
sample fixation points. (b) The corresponding salience map
generated using the technique of (Yamada & Cottrell, 1995).
Fixations tend to cluster around highly salient areas but relax-
ation of sampled points enforces an even distribution across
the image.

vision, to the distance of the eye from the image (and thus the
size of the foveated area) and the time spent studying the im-
age (determining the number of saccades made). For a patch
size of 35x35 pixels (corresponding to a visual angle of 1.5◦

for a subject about 75cm from a 256µm-pixel computer moni-
tor, an approximation of the human studies discussed below),
the input feature vector to our model has 35 x 35 pixels x
8 orientations x 4 frequencies = 39200 dimensions. For ef-
ficiency and good generalization, we use principal compo-
nents analysis (PCA) to reduce the size of this vector to 80
components, which retain about 90% of the variance depend-
ing on the dataset (see NIMBLE Results below). This fea-
ture extraction procedure of wavelet-based image decompo-
sition followed by PCA is a standard approximation for bio-
logically motivated vision models (Dailey, Cottrell, Padgett,
& Adolphs, 2002; Palmeri & Gauthier, 2004; Lacroix et al.,
2006).

Natural Input Memory (NIM)
The inspiration for our model of saccade-based vision comes
from the work of (Lacroix et al., 2004, 2006). Their Nat-
ural Input Memory (NIM) model is so-called since it takes
saccade-like samples from a studied image as input. Their
sampling method differs slightly from ours in that they sam-
ple from the contours of an image, determined by Canny
edge-detection, and then process the sampled patches with
the steerable pyramid transform, a multi-scale wavelet-based
transform that is similar to Gabor filtering. They apply PCA
to these features before storage in the memory.

Following the lead of many cognitive memory models
(Hintzman, 1984; Nosofsky & Palmeri, 1997; Dailey, Cot-
trell, & Busey, 1998), the NIM model’s memory process
stores the feature-transformed representation of fixated image



fragments as vectors in a high-dimensional memory space.
Memories are compared to each other as well as to new im-
age fragments by comparing the Euclidean distance between
their vector representations in the memory space. The NIM
model computes the familiarity of a new fragment by calcu-
lating the proportion of previously stored memories that lie
within a radiusr (a model parameter) of the new fragment
in the memory space. Averaging these familiarities over all
samples from a new image produces an estimate of the prob-
ability that the image is from the class known to the mem-
ory. The memory space introduced by the NIM model has
been shown to achieve the best known correlation with human
judgements of perceptual similarity (Lacroix et al., 2006),
and the retrieval methods exhibit human performance effects
(such as list length and list strength) on face recognition mem-
ory tasks (Lacroix et al., 2004).

The NIM memory retrieval method (Lacroix et al., 2006)
determines the familiarity of a newly examined fragment by
counting how many of the stored memories,{m1, ...,mM}, lie
within a radiusr of the new image fragment. Thus the famil-
iarity of the new fragment,f , is defined by:

f am( f ) =
M

∑
j=1

Ir(||mj − f ||2), (1)

where

Ir(x) =

{
1, x≤ r

0, otherwise.

NIM Combination of Fragment Familiarities
An image is represented as a set of fragments
F = { f1, ..., fN}. In the NIM model, (Lacroix et al.,
2006) define the familiarity of an image as the mean of the
familiarities of allN patches taken from that image:

f am(F ) =
1
N

N

∑
i=1

f am( fi). (2)

They use a logistic function to transform this mean familiar-
ity value into a probability:

P(familiar image) =
1

1+βe−θ f am(F ) ,

whereβ and θ are parameters of the model used to fit the
performance to human data.

The NIM model formulation (Lacroix et al., 2006) only
attempts to make judgements about thefamiliarity of a stud-
ied image by comparing a set of fragments extracted from
it to all previously stored memories. Since these memories
are stored without labels, the resulting familiarity value must
be compared to a threshold to decide whether the image is
familiar or unfamiliar. Our extension of NIM, described in
the next section, stores class labels with each exemplar, and
can return explicit posterior probabilities for each class given
the image fragments, permitting multi-class and hierarchical
memory tasks in addition to the familiar / unfamiliar recogni-
tion memory task in (Lacroix et al., 2006).

A More NIMBLE Approach
Having sampled and processed a new image as described
above, we want to evaluate the probability of the resulting set
of N fragments,F = { f1, ..., fN}, under the models for each
of a number of image classes (e.g., familiar/unfamiliar faces,
Alice/Bob/Carol/Dan/unknown, dogs/not dogs). For a class,
c, we use Bayes rule to compute the posterior distribution:

P(c|F ) =
P(F |c)P(c)

P(F )
.

In this case,P(F |c) is the likelihood of the set of image frag-
ments under the density model for classc, andP(c) is the
class prior which may be learned from experience with train-
ing data.

We compute the likelihood of the set of image fragments,
P(F |c), by combining the likelihoods of each individual frag-
ment,P( fi |c). We compute these class-conditional fragment
likelihoods using kernel density estimation (see below).

Näıve Bayes Fragment Combination
In the NIMBLE model, we can consider the naı̈ve Bayes
assumption of conditional independence between each frag-
ment fi ∈ F , given the class, and take the product of the indi-
vidual fragment likelihoods to get an estimate of the overall
likelihood function:

P(F |c) =
N

∏
i=1

P( fi |c). (3)

By integrating fragment likelihoods using the naı̈ve Bayes
combination (3), we can obtain a parameter-free estimate of
the posterior probability of each class given the image.

In contrast, if we consider the familiarity of image patches
in the NIM model to be fragment likelihoods, we can think
of NIM’s fragment integration method as defining the likeli-
hood of an image to be the mean of its fragment likelihoods:

P(F |c) =
1
N

N

∑
i=1

P( fi |c). (4)

However, it is difficult to interpret this formulation’s implicit
assumptions about dependence between fragments.

Bayesian Classification
The classification decision is made by comparing the log ratio
of the class and non-class posteriors:

log
P(c|F )
P(c|F )

= log
P(F |c)P(c)
P(F |c)P(c)

= log
P(F |c)
P(F |c)

+ log
P(c)
P(c)

.

(5)
The first term on the right-hand side of Equation (5) com-
pares the relative likelihoods of the observed fragments under
the class and non-class models. The second term controls the
bias or prior weight that the model or subject puts on seeing
images from classc versus all other images. The Bayes de-
cision rule classifies the image as coming from classc when



Equation (5) is positive and from classc otherwise. In the
multi-class framework, the Bayes-optimal rule is to chose the
class with the largest posterior probability:

c∗ = argmax
c

P(F |c). (6)

Kernel Density Estimation

Kernel density estimation places a kernel function at the point
in memory space corresponding to every memorized frag-
ment and computes the probability density of the new point
f under each of these kernels. The sum of these probabili-
ties forms the overall estimation for thelikelihoodof the new
fragment,P( f |c). The choice of kernel function and the para-
meters that control its shape are design features of the model,
which we will consider below.

We may interpret the NIM (Lacroix et al., 2006) measure of
a new fragment’s familiarity (1) as a kernel density estimate
that centers a hypersphere of radiusr, with uniform density,
at the location of each stored exemplar in memory space. The
familiarity of a new fragment,f , can be viewed as summing
its density under all of these uniform kernels.

By casting the problem of memory retrieval as a kernel
density estimation task we can explore the model’s perfor-
mance under a variety of kernel functions beyond the hyper-
sphere in (1). Indeed, this kernel prohibits using the naı̈ve
Bayes combination of fragment likelihoods (3) since, if a test
fragment f were to find no stored points within radiusr, it
would be assigned zero likelihood. In that case, even if all
other fragments were strongly predictive of the class, the re-
sulting product of fragment likelihoods would beP(F |c) = 0.

We implement the NIMBLE model using two alternative
kernel functions. The first is a Gaussian kernel:

P( f |c) =
1

|Mc|

|Mc|

∑
j=1

N ( f ,mj ,σ) (7)

(hereN (x,µ,σ) represents the normal distribution ofx with
meanµ and varianceσ). The second is ak-nearest-neighbor
(kNN) kernel:

P( f |c) ∝
kc

|Mc|V
, (8)

whereV is the minimum volume centered atf that contains
kc of the|Mc| memories from classc.

NIMBLE’s Bayesian framework can accommodate both
näıve Bayes combination of fragment likelihoods (3) and
NIM’s averaging method of combining fragment likelihoods
(4). In Tables 1 and 2, we refer to these two methods for ob-
taining an overall image likelihood from fragment likelihoods
asNäıve BayesandMean familiarity, respectively. We also
indicate the best parameter setting for each kernel.

Table 1: Model ROC area for face recognition memory. Im-
age likelihoods are determined by combining the familiarities
of image fragments using either naı̈ve Bayes (3) or the mean
of the fragment familiarities (4). The likelihood of an image,
given the distractor class is found using a background model
with either 10 or 80 dimensions. Standard errors of the mean
are computed over 5 random trials.

Kernel Fragment Combination ROC area
10-D BG 80-D BG

Gaussian Näıve Bayes 0.94±.03 0.58±.02
(σ = 1) Mean familiarity 0.97±.02 0.62±.13
kNN Näıve Bayes 0.93±.05 0.97±.02
(k = 1) Mean familiarity 0.96±.02 0.96±.01

NIMBLE Results
In our simulations of memory tasks below, we consider both
face and object datasets. For facial memory tasks, we use as
input 128x192 pixel grayscale images from the FERET data-
base (Phillips, Wechsler, Huang, & Rauss, 1998). Images of
95 male and female Caucasian faces without facial hair or
glasses were chosen and the images were centered and nor-
malized to have common eye positions and equal contrast.
An example may be seen in Figure 1(a). For object memory
tasks, we use 128×128 pixel grayscale images of 20 objects
from the COIL-100 data set (Nene, Nayar, & Murase, 1996).

Face Recognition

The first experiment used to test memory performance is a
simple face recognition task. We follow the formulation of
(Duchaine & Nakayama, 2005) who used this method to eval-
uate the face and object memory performance of normal and
prosopagnosic human subjects. The study phase of their task
presented subjects a sequence of 10 target images, each dis-
played for 3 seconds. This target list was repeated for a to-
tal of 20 image viewings. In the test phase, subjects were
presented with 50 images where 10 were the original targets
(again, shown twice) and 30 were novel distractors, the lures.
The subjects’ task was to classify each image in the study
phase as old or new. When tested on face image categories,
normal human subjects achieved receiver operating charac-
teristic (ROC) curve areas in the range 0.9 to 1.0 for this task.

In the study phase of our simulations, we extractN = 10
fragments from each of the target faces, approximating the
number of saccades a human makes in 3 seconds. We sam-
ple each of the 10 target faces twice and store the resulting
200 fragments in the model’s memory space. During the test-
ing phase, we extract anewset ofN fragments from the test
faces. Given the stochastic nature of our interest operator,
the exact fragments extracted from previously viewed target
images are unlikely to be seen again. As (Henderson et al.,
2005) demonstrated, human scan paths are not repeated in
facial memory encoding and retrieval, and so simple exem-
plar matching may not perform well. In our experiments, the
mean distance from a point sampled from a test face to the
nearest study point from the same face was 8.8 pixels.



Table 2: Model accuracy for identity recognition memory tasks. Face ID uses 29 identities from FERET, Object ID uses 20
classes from COIL-100. (Optimal gaussian variance for object ID is 10-times greater than for face ID). Standard errors of the
mean are computed over 5 random trials.

Kernel Face ID Accuracy (%) Object ID Accuracy (%)
Näıve Bayes Mean familiarity Näıve Bayes Mean familiarity

Gaussian (σ = 1,10) 85.6±2 72.2±2 87±1 73.7±2
kNN (k = 1) 89.2±.6 85.8±2 92.7±.7 87±.4

Since we do not restrict our model to discrete kernel func-
tions such as (1), in which only a subset of the stored mem-
ories contribute to the old/new decision, all stored memories
from a given class contribute to the estimate of the posterior
probability of the class. In order to apply the Bayes decision
rule (5) to the one-class recognition task described above, we
recast it as a two-class classification task. Training image
fragments are stored with a class label that indicates they have
been seen in the study phase.

We need to be able to estimate the likelihood that an im-
age fragment was generated by the lure (distractor) class,
P( f |c). To estimate this probability, we use a multivariate
Gaussian whose variance in each feature dimension is set
equal to the principal component (eigenvalue) obtained by
performing PCA on fragments extracted from 55 face images
not used in the study or test phases. We used this method be-
cause it approximates storing a large number of face patches
that a subject might see over her lifetime but is computation-
ally faster than explicitly sampling from an extra set of non-
task images. We compared the effect of using two different
background models to estimateP( f |c): a low-dimensional
background model using the first 10 principal component di-
mensions, and a high-dimensional background model using
the first 80 principal component dimensions. In Table 1, we
refer to these as10-D BGand80-D BG, respectively. The
Gaussian kernel suffers a drop in performance when using
the high-D background model since the extra dimensions of
the 80-dimensional background model (which account for the
least variance in the data) are quite susceptible to noise. When
categorizing a new input, the kNN model (k = 1) uses only
one data point, unlike the Gaussian model which takes input
from every point in memory. Thus, the kNN model is less
affected by noise.

For each set of test fragments, we compute the posterior
probability that these image fragments were generated by the
target and lure distributions. By varying the prior values for
each class,P(c) andP(c), we can generate receiver operating
characteristic (ROC) curves for the recognition memory task.
The area under the ROC curve is computed and results are
shown in Table 1. Normal human performance for face recog-
nition results from (Duchaine & Nakayama, 2005) show ROC
areas between 0.9 and 1.0, and NIMBLE performs similarly.

Image Identification

Having extended NIM to allow memories to be stored with
class labels, we now apply NIMBLE to multi-class mem-
ory tasks. In this paradigm, the model is trained using 3

images (with different lighting, expressions or orientations)
from 29 different FERET face identities or 20 COIL-100 ob-
ject classes, and tested on 3 unseen images from each of these
classes. Unlike in the recognition task, the model must now
learn to identify images it has never seen before. The out-
put of the model is the posterior probability for each class,
and the classification decision is made using (6). For this
multi-class problem, we assign equal prior probability to each
of the classes and evaluate performance as the average ac-
curacy over all classes. Note that the optimal parameter,
σ, for the Gaussian kernel depends on the class of images
to be identified since the within-class variance of patches
taken from rotating objects (COIL-100) is much higher than
the variance between patches sampled from aligned faces
(FERET). Identification task results are shown in Table 2.
Our model demonstrates high performance on these multi-
class tasks. For example, our best object recognition model
(kNN with Näıve Bayes) approaches state-of-the-art com-
puter vision models for object recognition; (Belongie, Malik,
& Puzicha, 2002) report 97.6% accuracy on the same task.

We use this multi-class task to demonstrate the advantage
of using the näıve Bayes method for combination of fragment
likelihoods (3) over the mean familiarity method (4) used in
(Lacroix et al., 2006). For certain images, a given fragment
may be either diagnostic of its true class or useful in exclud-
ing another class. In both cases, adding this fragment’s likeli-
hood to a running average over fragments (4) provides less
useful modification to the ultimate posterior than does the
probabilistically valid näıve Bayes updating method of mul-
tiplication (3). This scenario is illustrated in Figure 2 for the
mean posterior probability of the correct class in the facial
identification task, averaged over all 29 facial identities. We
use an online version of NIMBLE to update the posterior,
P(c|F ), as each fragment is added toF . With more informa-
tion, the posterior for the correct class with naı̈ve Bayes likeli-
hood combination (3) rises towards 1, while the posterior cal-
culated using mean familiarity (4) remains roughly constant.
The posterior probabilities of the 28 incorrect classes are not
shown but, since the sum over all 29 classes must equal unity,
it is clear that each incorrect class has very low probability
and that the Bayes decision rule in Equation 5 almost always
results in correct classification. Random guessing would set
P(c|F ) = 1

29. Note that these results make the prediction that,
on average, a single saccade is enough to correctly identify a
face!
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Figure 2: NIMBLE’s posterior probability of the correct face
class vs. number of fixations in the 29-class face identifica-
tion task. Posteriors are computed using both naı̈ve Bayes
combination of fragment likelihoods (3) and mean familiar-
ity combination of fragment likelihoods (4). The very low
probabilities of the 28 incorrect classes are not shown.

Discussion
Using the NIM model (Lacroix et al., 2006) as our start-
ing point, we developed NIMBLE, a biologically-inspired,
saccade-based Bayesian model of face and object recogni-
tion. We have demonstrated that NIMBLE performance is
comparable to human performance on a standard recogni-
tion memory task and that this biologically-inspired model
approaches the best machine vision results. In addition, the
online version of NIMBLE demonstrates that, like humans,
our system can achieve correct identification and recognition
of faces and objects after a very small number of fixations.

In future work, we plan to integrate top-down feedback
into the system to direct fixations to sample from image lo-
cations with top-down interest as well as bottom-up salience.
Because NIMBLE is a fully probabilistic model, it will be
straightforward to integrate the existing model into more
complex systems in the future.

References
Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching

and object recognition using shape contexts.Pattern
Analysis and Machine Intelligence, 24-4, 509-522.

Bishop, C. (1995).Neural networks for pattern recognition.
Oxford University Press.

Dailey, M., Cottrell, G., & Busey, T. (1998). Facial memory is
kernel density estimation (almost).Neural Information
Processing Systems.

Dailey, M., Cottrell, G., Padgett, C., & Adolphs, R. (2002).
Empath: a neural network that categorizes facial ex-
pressions. Journal of Cognitive Neuroscience. 14,
1158-1173.

Duchaine, B., & Nakayama, K. (2005). Dissociations of
face and object recognition in developmental prosopag-
nosia.Journal of Cognitive Neuroscience, 17, 249-261.

Henderson, J., Williams, C., & Falk, R. (2005). Eye move-
ments are functional during face learning.Memory &
Cognition, 33, 98-106.

Hintzman, D. (1984). Minerva 2: A simulation model of hu-
man memory.Behavior research methods, instruments
and computers, 16, 96-101.

Itti, L., & Koch, C. (2001). Computational modeling of visual
attention.Nature Reviews Neuroscience, 2, No. 3, 194-
203.

Jones, J., & Palmer, L. (1987). An evaluation of the
two-dimensional gabor filter model of simple receptive
fields in cat striate cortex.Journal of Neurophysiology,
58(6) 1233-1258.

Lacroix, J., Murre, J., & Postma, E. (2006). Modeling recog-
nition memory using the similarity structure of natural
input. Cognitive Science, 30, 121-145.

Lacroix, J., Murre, J., Postma, E., & Herik, H. J. V. den.
(2004). The natural input memory model.Proc. of the
26th annual meeting of the Cognitive Science Society.

Mozer, M., Shettel, M., & Vecera, S. (2005). Top-down
control of visual attention- a rational account.Neural
Information Processing Systems.

Nelson, J., & Cottrell, G. (2007). A probabilistic model of eye
movements in concept formation.Neurocomputing.

Nene, S., Nayar, S. K., & Murase, H. (1996).Columbia
object image library (coil-100)(Tech. Rep.).

Nosofsky, R., & Palmeri, T. (1997). An exemplar-based ran-
dom walk model of speeded classification.Psycholog-
ical Review, 104, 2, 266-300.

Palmeri, T., & Gauthier, I. (2004). Visual object understand-
ing. Nature Reviews Neuroscience, 5, 291-303.

Phillips, J., Wechsler, H., Huang, J., & Rauss, P. (1998).
The feret database and evaluation procedure for face-
recognition algorithms. Image & Vision Computing,
16, 5, 295-306.

Renninger, L., Coughlan, J., Verghese, P., & Malik, J. (2004).
An information maximization model of eye move-
ments.Neural Information Processing Systems.

Wolfe, J. (1994). Guided search 2.0: A revised model of
visual search.Psychonomic Bulletin & Review, 1, 2,
202-238.

Yamada, K., & Cottrell, G. (1995). A model of scan paths
applied to face recognition.Proc. of the 17th Annual
Cognitive Science Conference 55-60.

Yarbus, A. (1967).Eye movements and vision.Plenum Press,
New York.

Zelinsky, G., Zhang, W., B. Yu, X. C., & Samaras, D. (2005).
The role of top-down and bottom-up processes in guid-
ing eye movements during visual search.Neural Infor-
mation Processing Systems.


