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Training that uses exaggerated versions of a stimulus discrimination ("fading") has 
sometimes been found to enhance category learning, mostly in studies involving animals 
and impaired populations.  However, little is known about whether and when fading 
facilitates learning for typical individuals.  This issue was explored in 7 experiments.  In 
Experiments 1 and 2, observers discriminated stimuli based on a single sensory 
continuum (time duration and line length, respectively).  Adaptive fading dramatically 
improved performance in training (unsurprisingly) but did not enhance learning as 
assessed in a final test.  The same was true for nonadaptive linear fading (Experiment 3).  
However, when variation in length (predicting category membership) was embedded 
amongst other (category-irrelevant) variation, fading dramatically enhanced not only 
performance in training but also learning as assessed in a final test (Experiments 4 & 5).  
Fading also helped learners to acquire a color saturation discrimination amidst category-
irrelevant variation in hue and brightness, although this learning proved transitory after 
feedback was withdrawn (Experiment 7).  Theoretical implications are discussed, and we 
argue that fading should have practical utility in naturalistic category  learning tasks, which 
involve extremely high dimensional stimuli and many irrelevant dimensions. 
 
 
While there is a large literature on 

the learning of perceptual categories by 
human beings, a majority of papers in this 
area have focused on the structure of 
categories and their mental 
representations, rather than the procedures 
used in training.  Perhaps for this reason, 
while much has been learned about 
cognitive representations in category 
learning (e.g., Ashby & Maddox, 2005; 
Nosofsky, Palmeri, & McKinley 1994; 
Shepard, Hovland &  Jenkins, 1961;  Smith 
&  Minda, 2002) less is known about the 
processes that establish these 
representations.  Another consequence, 
perhaps, is that categorization research 
seems to have had relatively little 
translational impact on real-world training 

procedures despite the fact that perceptual 
category learning is a vital aspect of many 
important real-world skills ranging from 
dermatology to mineralogy, from bird-
watching to naval aviation. 

The current paper explores an 
instructional procedure that enjoys a long 
history within the field of experimental 
psychology, and which is often discussed 
under the rubric of 'fading'.  We use this 
term here to refer to the deliberate 
exaggeration of a perceptual distinction in 
order to help the learner to acquire the 
distinction (as mentioned below, the term 
also has another common meaning which is 
quite different).  As we argue shortly, the 
literature provides little specific guidance 
about when fading is likely to help normal 
individuals learn, and when it is not.   The 
present research explores this issue by 
comparing fading with a more 
straightforward training regimen using a 
variety of categorization tasks.   
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Two Types of Fading 
“Fading” is a term that has been 

used within the learning-theory and 
behavior-analysis literatures to refer to two 
quite different procedures for teaching 
discrimination tasks (encompassing what 
cognitive psychologists would call category 
learning tasks).  In both types of fading 
procedures, a highly salient cue is 
introduced at the outset of training, making 
correct responding relatively easy.  This 
cue is then gradually removed (“faded”), 
allowing the relevant stimulus property to 
acquire “control” over the response (i.e., to 
reliably elicit it).   In one form of fading 
(“cross-dimensional fading”), the initial cue 
is a feature orthogonal to the discrimination 
the instructor seeks to teach.  Thus, to 
teach someone to discriminate between two 
Turkish letters using cross-dimensional 
fading, one could start by making one of the 
letters red and the other green.  After time, 
one could fade out these colors until the 
form discrimination came to control the 
response. 

Cross-dimensional fading has 
sometimes been found effective in training 
animals (Doran & Holland, 1979; Terrace, 
1963).  It has also been extensively studied 
as a means of training retarded children 
(Jones & Eayrs, 1992).  However, a 
rigorous study by Ploog and Williams 
(1995) with pigeons found that it was 
actually less effective than trial-and-error 
learning.  As Ploog and Williams point out, 
this should perhaps not be altogether 
surprising, because cross-dimensional 
fading is identical to the associative 
blocking procedure, which is famous for 
slowing, rather than enhancing, associative 
learning (Kamin, 1969). 

The second form of fading--which is 
the focus of the current article--works quite 
differently.  This procedure, termed 
“transfer-along-a-continuum” fading by 
Ploog and Williams, was apparently first 
explored with animals by Lawrence (1952).  
In this procedure (which will be referred to 

henceforth simply as fading), the learner is 
exposed to exaggerated versions of the 
stimulus discrimination that must be 
mastered.   Ploog and Williams (1995) 
found this form of fading highly 
advantageous in teaching pigeons a flicker-
rate discrimination.  The birds were taught 
to peck in response to a flickering light 
(reinforced stimulus or S+) that flashed on 
and off, remaining on for 88 ms and off for 
110 ms, and ignore a light (S-) that 
remained on for 88 msec and off for 88 
msec.  In the fading condition, the initial S+ 
involved a more extreme difference (88 
msec and 1770 msec, respectively); this 
difference was then reduced over the 
course of training.  Fading produced much 
more rapid learning than a trial-and-error 
procedure in which flicker rate was not 
changed over the course of training.   
Working with the octopus, Sutherland, 
Mackintosh, and Mackintosh (1963) found 
similar results. 

Turning to studies involving human 
beings, there are some hints in the 
literature that fading can be helpful.  The 
most systematic body of favorable evidence 
comes from research by Jamieson and his 
colleagues in the field of audiology 
(Jamieson & Morosan, 1989; Jamieson & 
Rvachew, 1992).   Their primary focus was 
on methods of teaching native speakers of 
French the voiced/voiceless “th” distinction 
(“theta” vs. “the”), which is critical in 
comprehending English but notoriously 
difficult for francophones to master.  
Jamieson and colleagues found that a 
fading procedure using synthetic speech 
sounds that exaggerated the underlying 
formant differences greatly facilitated 
francophones’ acquisition of this distinction 
(see also Temple et al., 2003).  However, 
more recent studies of fading in teaching 
speech contrasts did not find very large 
benefits of fading when feedback was 
provided, although in the presence of 
feedback, the fading group did generally 
show somewhat faster learning 
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(McClelland, Fiez, & McCandliss, 2002; 
McCandliss, Fiez, Protopapas, Conway, & 
McClelland, 2002).    There is also a 
substantial literature demonstrating benefits 
of fading in training of mentally retarded 
children (e.g., Strand and Morris, 1986).   
Further afield, Ahissar and Hochtein (1997) 
found that pre-exposing people to a display 
for a considerable period of time enhanced 
their subsequent learning from very brief 
masked presentations. 
 
Current Research 
 The goal of the present research is 
to examine the relative effectiveness of 
fading in several different situations that 
have not, to our knowledge, been 
contrasted.   All our experiments involve 
training with feedback using normal adult 
learners.  The first three experiments 
compare a Fading condition with a Difficult 
control condition using category-critical 
dimensions that the subjects are well 
familiar with (namely, temporal duration and 
line length), and informing the subjects 
about what dimension they should be 
focusing upon. The tasks required learning 
relatively fine perceptual discriminations, 
presumably meaning that perceptual noise 
is a main aspect of what makes the tasks 
difficult. In the first two experiments, fading 
was accomplished using a staircase 
algorithm which adjusted difficulty to keep 
the task relatively easy for subjects, while 
the third experiment started with a very 
easy discrimination and increased the 
difficulty according to a fixed schedule that 
operated without regard to the learner's 
successes or failures.  After that, we 
present experiments in which, in addition to 
a category-relevant dimension, the stimuli 
also contain variation on category-irrelevant 
dimensions. 
 As will be argued in the General 
Discussion, the efficacy of fading has 
substantial theoretical interest as well as a 
great deal of practical interest.  Fading 
greatly reduces the number of errors made 

in training, and for this reason examining its 
effects may help in assessing the validity of 
error-correction models that propose that 
representations of category structure are 
modified only after errors.  The efficacy of 
fading may also shed light on computational 
models according to which category 
members lying close to the decision 
boundary constrain the learner's internal 
representation of the boundary.  Finally, as 
we will see in the General Discussion, it 
may also shed light on the role of attention 
in perceptual category learning. 
 
Experiment 1: Auditory Duration 
Discrimination 

In Experiment 1, subjects learned to 
distinguish "long" durations (greater than 
500 ms) from "short" durations (less than 
500 ms).  All subjects performed 12 training 
blocks followed by four test blocks; each 
block consisted of 40 trials.  In the Fading 
Condition, the long and short durations 
began at values selected to be easily 
distinguished (600 vs. 400 ms, respectively) 
and the difference was adjusted after every 
trial using a staircase algorithm that 
maintained a high level of subject 
performance.  In the Difficult Condition, the 
durations were 530 and 470, respectively.  
These same values were used in the test 
for all subjects. 
Methods 
Participants and Design 

Subjects were 84  undergraduate 
students at the University of California, San 
Diego, participating in a lab experiment for 
course credit.  
Design 
 Subjects were randomly assigned to 
the Fading Condition or the Difficult 
Condition (between subject design).   
Stimuli 
 The stimulus on each trial was a 
600-hz tone played through loudspeakers 
that varied from trial to trial only in its 
duration 
Procedure 
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Subjects were told "This is an 
experiment on the perception of brief time 
intervals.  On every trial, you will hear a 
tone.  The duration of the tone will be 
approximately one-half second.   But 
sometimes it will be a little longer than .5 
seconds —this makes it a 'long tone'—and 
sometimes it will be a little shorter than .5 
seconds—this makes it a 'short tone'.  Your 
job is simply to try to decide if you heard a 
short tone or a long tone on each trial, 
and respond accordingly. "  Subjects took 
as long as they wanted to respond, and 
they were also advised that the difficulty of 
the task (proximity to the 500 msec 
boundary) might vary. 

There were 12 blocks of 40 training 
trials followed by 4 blocks of 40 test trials.  
On each trial, a fixation cross appeared for 
500 ms, followed by a blank period of 500 
ms, followed by the playing of the tone.  
The subject responded by pressing the N or 
M keys for short and long duration, 
respectively.  After the subject responded, 
feedback was provided (a display of 
“Correct” or “Error” on the screen for 1000 
msec), followed by a 1500 msec pause 
before the fixation cross for the next trial. 

For subjects in the Difficult 
Condition, the time durations used were 
530 and 470 msec throughout both the 
Training and Test Phases of the 
experiment.  For subjects in the Fading 

Condition, the time durations were adjusted 
from their starting point of 600 and 400 
msec, respectively, using a staircase 
algorithm.  When the subject made a 
mistake, the gap between the long and 
short durations was expanded by 20 msec; 
when the subject made correct responses 
on three consecutive trials, the gap was 
contracted by 20 msec with the constraint 
that the gap could not get any smaller than 
that used in the Difficult Condition.   Before 
the final test, subjects were told "In the final 
set of four blocks, there will be no feedback 
after each trial. Please continue to do your 
very best."  The final test used the 470/530 
distinction for all subjects. 

 
Results and Discussion 

Sixteen participants failed to 
complete the study within the one hour time 
period during which they were available for 
testing, and their partial data were not 
included in the final analysis.  Figure  1, 
Top Panel shows the mean gap between 
the long and short durations as a function of 
training block for the two conditions.  The 
Difficult Condition intervals remained at 
their preset values throughout training, 
while the differences in the Fading 
Condition tended on average to decline 
over the first half of training, followed by 
what appears to be a rough plateau.   
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Figure 1.   Results of Experiment 1.  Top Panel: average gap in milliseconds as a function of block and condition (gap is 
fixed at 60 for the Difficult condition, whereas it starts at 200 and is adjusted adaptively for the Fading condition).  Middle 
Panel: average percent correct for the two groups during the 12 training blocks.  Bottom Panel: average percent correct for 
the two groups during the final 4 test blocks (using the same gaps as the Difficult condition). 
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The middle panel of Figure 1 shows 
average accuracy over the training blocks 
for the two conditions.    As expected from 
the nature of the staircase algorithm, 
accuracy stays close to 80% in the Fading 
Condition.  The lower panel shows 
performance on the final four test blocks.   
Overall performance was 67.8% in the 
fading condition and 66.1% in the difficult 
condition; the 1.7% difference was not 
significant, t(66) =0.82, p = 0.41, d = .20. 
The 95% confidence interval on the 1.7% 
difference ranged from -2.5 to 6.0.  

 
Experiment 2: Line Length 
Discrimination 

Experiment 2 used the same 
design as that used in the previous 
experiment, except that the discrimination 
involved the length of lines.   All aspects of 
the Method were the same as in 
Experiment 1 except as noted below. 
Methods 
Twenty-eight subjects from the same 
population participated in the experiment.  
The stimuli on each trial were vertical lines 
5 pixels in width.    In the Difficult 
Condition, subjects saw either a long or a 
short line (104 or 96 pixels long, 

respectively--the same values used in the 
Test).  In the Fading Condition, the two 
lengths were initially set to 120 and 80 
pixels, respectively, and adjusted using 
the staircase algorithm.  In the final test, 
the difficult values were used for all 
subjects.   The position of lines on the 
screen was randomly jittered from trial to 
trial so that subjects would need to assess 
length rather than position of the endpoint 
of the lines.     
Results and Discussion 

Figure 2, Top Panel shows the Line 
Length values used in training, and Figure 
1, Middle Panel shows mean performance 
in training.   In training, the Fading 
condition did somewhat better on average 
(86% for Fading versus 83% for Difficult).  
This trend was not significant, however, 
t=1.6, p=.12, d=.62.   However, in the final 
test (Figure 1, Bottom Panel), the Fading 
condition was outperformed by the Difficult 
condition, though the 3.2% difference was 
not significant, t(25) = -1.23, p=.23, d = -
.47, (confidence interval -8.62 to 2.17). 
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Figure 2.   Results of Experiment 2.  Top Panel: average gap in pixels as a function of block and condition (gap is fixed at 8 
for the Difficult condition, whereas it starts at 40 and is adjusted adaptively for the Fading condition).  Middle Panel: 
average percent correct for the two groups during the 12 training blocks.  Bottom Panel: average percent correct for the 
two groups during the final 4 test blocks (using the same gaps as the Difficult condition). 
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Experiment 3: Linear Fading 
 Is the failure to find a substantial 
benefit of fading due to the use of a 
staircase algorithm to control stimulus 
differences?  One consequence of the 
staircase algorithm is that for the average 
subject, the gaps between stimuli never 
reach the same difficulty level as that used 
in test (although for some individual 
subjects, they did.)  One might surmise 
that for this reason, this adaptive form of 
fading might not work best.    Experiment 
3 used the same task as Experiment 2, 
but here the Fading group experienced a 

predetermined schedule for reducing  the 
length difference over time: the difference 
began at 52 and was reduced by 4 pixels 
every block, ending up with a block of 
practice at 8 (the same degree of 
difference used in test, and in the Difficult 
Condition throughout training).    
Results and Discussion 

Thirty-four subjects from the same 
population participated in the experiment.  
The Top Panel of Figure 3 shows the Line 
Length values used in training, and the 
Middle Panel shows average performance 
during training.   	
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Figure 3.   Results of Experiment 3.   Top Panel: average gap in pixels as a function of block and condition (gap is fixed at 
60 for the Difficult condition, whereas it started at 52 and was adjusted linearly for the Fading condition).  Middle Panel: 
average percent correct for the two groups during the 12 training blocks.  Bottom Panel: average percent correct for the 
two groups during the final 4 test blocks (using the same gaps as the Difficult condition). 
 

As expected, the Fading group 
outperformed the Difficult group, although 
the difference disappeared in the final 
blocks of training when the two conditions 
converged.   However, in the final test 
(Top Panel), the Fading group performed 
comparably (75.8%) to the Difficult group 
(74.9%), t(32) = 0.28, p = 0.78, d = .10. 
Again there was a minor difference in 
degree of learning seen for the Fading 
group, but the difference (0.96%) is fairly 
minor (confidence interval -5.89 to 7.80). 
Experiment 4: Length Embedded in 
Noise Dimensions 
 The results thus far show that 
Fading produces major enhancements in 
performance during training--as expected 

since it makes the discrimination easier.  
However these changes in performance 
have not been associated with any 
enhancement of learning, as assessed in 
the final difficult test.  In the next 
experiment, the task involved the same 
length discrimination that was used in 
Experiment 2, but the stimuli varied on 
multiple additional dimensions, all of which 
were category irrelevant.    
Method 
 Subjects were told that they would 
learn to distinguish "New World Demons" 
from "Old World Demons" (see Figure 4).    
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Figure 4   Examples of stimuli used in Experiment 4.  Top Panel shows stimuli from Difficult Condition.  Bottom Panel 
shows stimuli from Fading Condition (initial value).   Horn height is the relevant dimension, but brightness, hue, eye size, 
and nose presence all vary. 

 
The "demons" varied in four dimensions: 
horn height, eye diameter, lightness of the 
head, and presence of a "nose".   Horn 
height was the only dimension that 

predicted category membership, and the 
distribution of horn height values in this 
experiment exactly tracked (on average) 
the distribution of line lengths used in 
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Experiment 2.  The values on the other 3 
dimensions were drawn (randomly and 
independently on each trial) from either a 
uniform distribution (eye diameter, 
lightness of the head) or by a coinflip 
(presence of a nose) without regard to 
whether the Demon was Old World or 
New World.  Thus, the variation in horn 
height--- the sole predictor of category 
membership---was embedded in variability 
on three nonpredictive dimensions.  
Subjects saw 480 individually-created 
demons in training, and 160 in the test. 
 Results 

Thirty-five subjects from the same 
population participated in the experiment.  

 The Top Panel of Figure 5 shows 
the Horn Height values used in training, 
and the Middle Panel shows average 
performance during training.   The Difficult 
Group showed scarcely any learning 
whatsoever.  By contrast, the Fading 
group performed quite well (averaging 
86.1% from blocks 3-12).   In the final test 
(Top Panel), the Fading group maintained 
its superiority, performing at 69.0%, as 
compared to 49.0% for the Difficult group 
t(33) = 7.72, p<001, d = 2.58.  
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Figure 5.   Results of Experiment 4.   Top Panel: average Horn Height gap in pixels as a function of block and condition in a 
"demon categorization" task with demons that varied in horn height and four other dimensions.  Middle Panel: average 
percent correct for the two groups during the 12 training blocks.  Bottom Panel: average percent correct for the two groups 
during the final 4 test blocks (using the same gaps as the Difficult condition). 
 
 

Discussion 
The benefit of Fading seen in the final test 
averaged 20.1%, an order of magnitude 
larger than the largest fading advantage 
seen in any of the first three experiments 
(1.75% in Experiment 1).  
 
Experiment 5:  Expanding the Length 
Difference 
 Experiment 4 showed a dramatic 
benefit of Fading training when the learner 
was confronted with a task requiring the 
identification of the relevant dimension 
from among a number of varying (and ask-
irrelevant) dimensions.   However, the 
Difficult group appears to have learned 
virtually nothing in Experiment 4, perhaps 
making the advantage of the Fading group 
arguably less meaningful.  To see if the 
advantage of Fading remains when the 
discrimination task confronting the Difficult 
group in training (and both groups in test) 
is one that can be acquired to some 
degree, we increased by a factor of 2.5 
the discrimination difference used in the 
Difficult training (as usual, the same 
values as in the Difficult condition were 
used in the final test for all subjects).   The 
methods followed Experiment 4 except as 
noted. 

Method 
 Thirty-six subjects participated.  For 
the Difficult group (and in the final test for 
all subjects) horn heights were 90 and 110 
pixels for Old World and New World 
Demons, respectively.  The starting values 
for the Fading group was as in Experiment 
4. 
 Results 

Two subjects did not complete the 
study within the hour timeframe and 1 
subject did not follow instructions (he left 
the experimental booth on three 
occasions, asking questions focused on 
personal difficulties he was having which 
were unrelated to the study.)  Removing 
these subjects left 33 participants in the 
experiment.  The Top Panel of Figure 6 
shows the Horn Height values used in 
training, and the Middle Panel shows 
average performance during training.   
The Difficult Group showed substantial 
learning, with performance averaging 
61.8% over the second half of the training 
phase.  By contrast, the Fading group 
performed even better than in Experiment 
4 (averaging 98.1%  in the second half).   
In the final test (Top Panel), the Fading 
group maintained its superiority, 
performing at 97.8%, as compared to 
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67.1% for the Difficult group, t(31) = 5.52, 
p < .001, d = 1.95.   

 

 

 
 
 

 

 
Figure 6.   Results of Experiment 5 (similar to Experiment 4 but with greater difference on the relevant dimension of horn 
height).   Average Horn Height gap (Top Panel), performance in training (Middle Panel) and test (Bottom Panel). 
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Discussion 
Although both groups showed 

learning in this experiment, the Fading 
group showed an even larger benefit 
(30.6%) than in the previous study 
(confidence interval 18.3 to 42.5).    

 
Experiment 6:  Erasing the Fading 
Advantage through Verbal Instructions 
 The preceding two experiments 
showed dramatic benefits of fading in the 
context of a trial-and-error learning task in 
which the learner had to figure out what 
dimension was relevant.  If it is indeed this 
opacity that produced the fading 
advantage—rather than, say, the 
variability across dimensions per se—we 
should expect that the advantage could be 
eliminated by telling all learners what 
dimension was relevant.  The current 
study followed the methods of Experiment 
4, except as noted. 
Method 

Thirty-four subjects participated.  
After the subject had completed block 6 
(the halfway point in training), all subjects, 
regardless of condition, were told through 
a message presented on the computer 
screen "Be advised: The key difference 
between Old World and New World 
Demons relates to the height of the horns.  

There are other dimensions on which the 
stimuli vary randomly, but horn height is 
the one that helps distinguishing Old 
versus New World."  Subjects had to 
affirm "I understand that horn height is the 
only dimension that distinguishes Old 
World and New World demons." before 
proceeding. 
 Results 

The Top Panel of Figure 7 shows 
the Horn Height values used in training, 
and the Middle Panel shows average 
performance during training (with an arrow 
indicating the point at which the special 
instruction was provided to both groups).  
As in Experiment 4, the Difficult Group 
showed no detectable learning in the first 
portion of training (averaging 49.5% for 
blocks 1 to 6).  However, after the 
message was displayed, this group 
showed an immediate jump in 
performance.  Interestingly, so did the 
Fading Group.  In the final test (Bottom 
Panel), the Fading group performed worse 
at 69.5%, compared to 75.1% for the 
Difficult group, a nonsignificant difference 
t=1.04, p=. 31, d = -.36. 
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Figure 7.   Results of Experiment 6 (like Experiment 4 but with explicit cuing of relevant dimension, provided between 
blocks 6 and 7 (marked by arrow).  Average Horn Height gap (Top Panel), performance in training (Middle Panel) and test 
(Bottom Panel).   Cuing benefits both groups in training, reversing the fading advantage seen in test. 

 
 

Discussion 
The results are consistent with the 

idea that the increase in learning due to 
the fading condition which was seen in 
Experiments 4 and 5 reflected a conscious 
discovery of the predictive relationship by 
this group.  The explicit coaching provided 
here yields an immediate advantage to 
both groups, leaving no residual learning 
advantage for the Fading condition. 
 
Experiment 7:  Fading with a Hard-to-
Verbalize Dimension 
 We have seen that fading can help 
the learner to discover discrete and simple 
and easily verbalized predictors of 
category membership which are obscured 

by the presence of variation in other 
dimensions that are not related to 
category membership.  What would 
happen if the subject must learn about a 
predictor which is not so easily verbally 
labeled?  To explore this issue, we used 
stimuli that varied in hue, saturation, and 
brightness, with only saturation 
determining category membership.   
Learners were advised merely that "color" 
was the relevant dimension.  
Method 
 The task again involved sorting 
demons which varied in hue, brightness, 
and saturation (the demons had fixed 
values of eye height and horn height, and 
they always had noses).  Participants 

15	



WHEN	DOES	FADING	HELP	LEARNING?	 	 	

	

were told: "...the difference between Old 
World and New World depends upon 
something about the color of the demon.  
However, it is not a simple rule like 'Old 
World are red' or anything like that."  Hue 
values were chosen uniformly over  the 
entire range (0-1) and brightness values 
were chosen from the range between 0.5 
and 0.9 on a 0-1 scale.  In the Difficult 
Group training, and in the final test, the 
saturation values were .55 for Old World 
Demons and .45 for New World Demon on 
a 0-1 scale.  For the Fading Condition, the 
saturation values began at .65 and .35 (a 
2X streching of the saturation range) and 
were adjusted by .01 using the staircase 
algorithm used in prior experiments.  All 
color values were represented in Matlab's 
HSB color space, and Matlab was used to 
convert from HSB to RGB values.   

 Results and Discussion 
The Top Panel of Figure 8 shows 

the saturation difference between Old and 
New World Demons used in training, and 
the Middle Panel shows average 
performance during the training phase.  
The Difficult Group showed no detectable 
learning (averaging 50.8% for blocks 7 to 
12).  The Fading Group, on the other 
hand, reached 77.4% for blocks 7 to 12.  
In the final test  (Bottom Panel), the 
Fading group performed better (60.9%) 
than the Difficult group (51.0%), a 
significant difference, t = 4.34, p< .001,  d 
= 1.64.  During the test, the Fading Group 
appeared to lose some of its gains 
(averaging 68.2% in block 13 falling to 
57.1% in block 16, a significant drop, 
t=3.5, p<.005.) 
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Figure 8.   Results of Experiment 7.   Average gap in hue (Top Panel), performance in training (Middle Panel) and test 
(Bottom Panel) for a color-based "demon categorization" task in which the relevant variable is saturation, with task-
irrelevant variation in hue and brightness.  Here too, fading proved beneficial, although the gains appeared to diminish 
during the (feedback-free) test trials.   
 
 

 
Discussion 

Here in a task requiring people to 
acquire a subtle discrimination based on a 
relatively unfamiliar and hard-to-verbalize 
aspect of color, fading again enhanced 
learning.  (In a follow-up study, we allowed 
saturation to vary as in the current 
experiment, but with hue and brightness 
values fixed throughout for a given 
subject.  To our surprise, the Difficult 
Group still showed almost no learning in 
that experiment.  The advantage of fading 
was again confirmed in the final test, albeit 
apparently somewhat smaller in 
magnitude.) 

As in Experiments 4 and 5, the 
color stimuli used in this Experiment were 
multidimensional, and the learner’s task 
was not only to identify a category 
boundary along one dimension, but to 
identify the relevant dimension. From a 
generative perspective, the color stimuli 
are three dimensional, but there are not 
only multiple potential encodings of these 
three dimensions—HSB, RGB, LMS, 
etc.—but there are many potential verbal 
dimensions that might be used for color 
classification (pastel, neon, typical car 
colors, etc.). From the subject’s 

perspective, the task in this Experiment 
may have involved selection from a very 
high, redundant space of possible 
encodings to identify the critical 
dimension. 
 
General Discussion 

The research described here was 
motivated by the observation that although 
fading has been extensively used over the 
years with some success in training 
animals and impaired human populations, 
little is known of when it is and is not 
effective in enhancing perceptual category 
learning for typical adults.  The results can 
be fairly easily summarized: "stretching" 
the critical distinction does not seem to 
help in the acquisition of a difficult 
discrimination that relies upon a simple 
perceptual dimension that can be (and is) 
well specified to the learner.  (Naturally, 
we cannot rule out the possibility that 
some different form of fading than either of 
the types examined here might provide big 
advantages in unidimensional 
discriminations.  For example, it might be 
interesting to examine an adaptive fading 
which ends with several blocks of training 
at the difficult level used in test.)
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However, where fading did prove 
extremely helpful in our experiments was 
when the dimension is not specified in 
advance, and category-relevant variation 
is accompanied by category-irrelevant 
variation on other "noise" dimensions.  
Moreover, fading also proved helpful when 
the discrimination relied upon a feature 
that is not easily verbalized (color 
saturation).  One rather natural suggestion 
would be that fading may be helping the 
learner achieve a more effective 
attentional selection of the relevant 
dimension (see Kruschke, 2005, for 
discussion of attention and category 
learning.)  This interpretation seems 
consistent with the fact that when a verbal 
specification of the relevant dimension 
was provided partway through training on 
a multidimensional stimulus (Experiment 
6), the benefit of fading was augmented 
for the remainder of the training session 
but eliminated within the test. 

 
Theoretical Implications 

There has been one interesting 
theoretical effort to develop a Hebbian 
learning account of why fading might be 
useful for the special case in which the 
learner has been extensively pre-trained in 
one classification boundary and now 
seeks to relearn a different boundary 
which reclassifies familiar stimuli--as 
happens for example when native 
Japanese speakers attempt to master the 
[r]-[l] phonemic distinction.  McClelland, 
Thomas, McCandliss, & Fiez (1999) 
offered a Hebbian account--basically 
suggesting that a deeply ingrained percept 
(e.g., a sound category in one's native 
language) can function as an "attractor" 
which interferes with the ability to perceive 
distinctions lying within the boundaries of 
the familiar category.  McCandliss et al 
(2002) compared the effects of multiple 
training sessions conducted using an 
adaptive training (fading) procedure 
versus a fixed training procedure for 

training this category to Japanese natives. 
When feedback was provided, the 
adaptive training enhanced learning 
somewhat more than the fixed training 
procedure. (Without feedback, neither 
procedure was particularly effective.)  On 
the other hand, three days of training 
produced considerable learning even in 
the fixed training procedure, which the 
authors acknowledged to be something of 
a challenge for their model (see also 
McClelland et al., 2002). 

Obviously, the situation of the 
native speaker of Japanese trying to 
acquire a phonological distinction not 
present in their native language may differ 
in important ways from any of the cases 
studied in the current study.  While some 
of our tasks involved difficult 
discriminations obscured by noise, none of 
them seem to involve the presence of 
dramatic potential negative transfer which 
occurs in the phonemic training case, 
where the learner has already had a vast 
number of experiences with applying a 
different decision boundary to the very 
same stimuli. 

According to many influential 
theoretical analyses, human category 
learning is completely or mostly driven by 
the making and detection of errors (e.g., 
Gluck & Bower, 1988; Kruschke, 1992; 
Nosofsky, Palmeri, & McKinley, 1994).  
According to this analysis, when the 
learner classifies an object and gets 
feedback saying that the judgment was 
wrong, mental representations of the 
category are modified.  On the other hand, 
when no error takes place, category 
representations are generally left 
unmodified.  From this perspective, one 
would expect that fading—seeks to 
minimize errors—would not be a very 
helpful training procedure.  

Essentially the same prediction 
arises from the more abstract perspective 
of computational theories in the field of 
machine learning.  Consider n dimensional
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training stimuli as points in an n-
dimensional space.  The goal of learning 
is to discover the decision boundary that 
separates examples of one category from 
examples of the other category. Different 
types of machine-learning classifiers make 
different assumptions about the shape of 
the decision boundary.  The simplest 
decision boundary is a hyperplane (or line 
in 2D) that cuts the input space in half, 
and such a boundary is achieved by a 
linear classifier. Regardless of the form of 
the classifier, the examples close to the 
category boundary provide the strongest 
constraint on the boundary. Thus, the 
early examples of Difficult Training are 
more useful to the learner than the early 
examples of Fading due to their proximity 
to the category boundary. For this reason, 
traditional linear classifiers tend to work 
better when trained on difficult stimuli.  
The same is even more dramatically true 
for the sophisticated modern classification 
algorithms widely used in computer 
applications, such as Support Vector 
Machines (Vapnik, 1995).  SVMs are 
explicitly adjusted on the basis of the 
"marginal examples" found to lie on or 
near the classification boundary.  The 
Fading intervention reduces both the near-
boundary density and number of the cases 
presented near the margin. 

A recent analysis based on 
computational learning theory (Khan, Zhu, 
& Mutlu, 2011) offers an alternative 
framework for understanding the benefit to 
a learner of a particular sequence of 
training examples. The analysis assumes 
that the learner is theoretically optimal, 
meaning that they make the best possible 
use of examples they’re provided to home 
in on the category boundary.  The analysis 
further assumes that the decision 
boundary is a hyperplane aligned with all 
axes of the stimulus space but one. That 
is, the decision boundary can be cast as a 
threshold on a single dimension of 
possibly multidimensional stimuli (e.g., 

"line segments longer than 3 cm"). Thus, 
learner’s task involves identifying the 
relevant stimulus dimension and then 
determining the threshold value on that 
dimension.  Khan et al.’s analysis 
indicates that if the stimulus space is one 
dimensional—and therefore that there is 
no need to determine which dimension is 
relevant—the teacher should select 
examples just below and just above the 
threshold, allowing the optimal learner to 
discover the category boundary with just 
two examples. However, if the stimulus 
space is n dimensional, the situation is 
quite different because the learner’s first 
goal is to determine which dimension is 
relevant.   

Kahn et al.’s mathematical analysis 
is based on the notion of a hypothesis 
space—a set of candidate hypotheses that 
the learner has not ruled out. Each 
hypothesis represents one possible 
category definition and is of the form, “The 
relevant dimension is d and the threshold 
on dimension d for category membership 
is .” The theoretically optimum learner 
rules out all hypotheses that are 
inconsistent with the examples it has been 
shown. For example, if the learner is 
shown a demon with a 4 cm horn and told 
that it is an old world demon, then the 
learner can eliminate the hypothesis that 
“the relevant dimension is horn length and 
any horn length greater than 5 cm is an 
old world demon.” If the plausibility of a 
dimension is related to the number of 
remaining hypotheses based on that 
dimension, then in order to boost the 
plausibility of the true relevant dimension 
(e.g., horn height), the teacher should 
choose initial training examples that are as 
far from the decision boundary as 
possible, because these examples 
preserve the largest number of 
hypotheses on the true relevant 
dimension. Because feature values on the 
other dimensions are assumed to be 
chosen randomly, hypotheses pertaining 
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to these dimensions will be efficiently ruled 
out, leaving only hypotheses pertaining to 
the relevant dimension. Once the relevant 
dimension has been determined, then 
clearly the examples should be chosen as 
close to the boundary as possible. The 
transition from determining  which 
dimension is relevant to determining the 
boundary on that dimension yields a 
fading schedule. Through a formal 
framework of risk minimization, Kahn et al. 
can quantitatively specify the optimal 
fading schedule. The fading rate depends 
on the effective stimulus dimensionality, 
with faster fading being optimal the lower 
the dimensionality. 

Although Kahn et al.’s analysis is 
premised on an optimal learner—a learner 
with unlimited memory and processing 
power—the result is qualitatively the same 
for resource limited learners (Zhu, 
personal communication).  Kahn et al.’s 
analysis is not cast in terms of selective 
attention, but one might consider the 
amount of attention drawn to a dimension 
as being proportional to the number of 
remaining hypotheses on that dimension. 
In this view, the benefit of fading is to drive 
the learner’s attention to the relevant 
dimension as irrelevant dimensions are 
gradually eliminated due to 
inconsistencies with the examples 
presented.  Sequence effects have also 
been observed in unsupervised learning 
(Clapper & Bower, 2002), which have 
been argued to arise from the build up of 
expectations when runs of similar (same 
category) items are presented in 
sequence.  It would be intriguing to 
develop a unified theory that covers both 
supervised learning tasks (as described in 
this article) and unsupervised tasks. 

Other accounts of the fading 
advantage also deserve consideration.  
One such account is an alternative 
analysis of how attention is drawn to the 
relevant dimension. Selective attention to 
a dimension may be based on  the sheer 

amount of variability present along this 
dimension.  On this account, it is not the 
distance between examples on the 
relevant dimensions that helps, but rather 
is just the magnitude of the variation on 
that dimension.  This might be expected to 
occur if, for example, learners search for 
the relevant dimension by starting with 
dimensions showing the most salient 
variation.  This account makes an 
interesting prediction which can be tested 
in future research: increasing variability 
within an irrelevant dimension should 
produce a very marked interference with 
learning.  

Another account, which strikes the 
authors as perhaps the most plausible of 
any discussed here, is that stretching the 
relevant dimension promotes identification 
of the relevant dimension because the 
learner is in fact computing a noisy 
correlation between category membership 
and dimension value for all of the 
dimensions in parallel. (Although it is 
simplest to imagine this unfolding in 
parallel across dimensions, certain forms 
of sequential correlation models could also 
explain the data, e.g., suppose people 
proceed one dimension at a time, 
computing a rough estimate of the 
correlation between that dimension and 
the category label, proceeding on to the 
next dimension if the observed correlation 
does not exceed a very high threshold ("if 
there is an obvious correlation between 
the feature and the category label, 
continue to investigate this dimension--
otherwise, check another dimension".)  
For such a process, fading would have the 
effect of prioritizing the relevant 
dimension, thus enhancing both 
performance during training and also 
learning as seen on a later test.  It seems 
possible that detailed examination of the 
data could distinguish the parallel and 
sequential models.   

In the discussion above, in 
speaking of a "noisy" computation of 
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correlation we mean that observations are 
misencoded or misremembered; 
alternatively, dimension values may be 
perturbed by noise or category labels may 
be occasionally flipped.  The reason it is 
critical to assume that the calculation is 
noisy in some way is because if the 
calculation were accurate and free of 
random noise, the stretched case would 
actually yield the same correlation 
coefficient as the unstretched case 
(because stretching is a linear 
transformation that leaves correlation 
values unchanged.)  To put the point in 
crude terms, it is only if people are doing a 
"bad job" of correlating values on each 
dimension with category membership that 
it should help in any way to stretch the 
values on the relevant dimensions; if they 
were doing a perfect job of computing this 
correlation, the relevant dimension would 
emerge just as fast without the stretching.  
It will be interesting in subsequent work to 
see if it is possible to distinguish between 
this account and the alternative ones 
mentioned above.  The focus in the 
current paper is on overall levels of 
performance in training, but the results 
also point to the likely promise of more 
fine-grained analysis of trial-by-trial data to 
shed new light on basic mechanistic 
questions surrounding perceptual category 
learning.  

 
Practical Implications  

Besides the intriguing theoretical 
possibilities just described, the current 
results also offer some guidance for 
development of training strategies with 
difficult discriminations that arise in real 
world settings.   It seems likely that the 
discriminations that provide a training 
challenge in fields from dermatology to 
radiology to bird-watching are usually 
ones that involve learning to utilize cues 
that are probabilistic and not easily 
verbalized.  Indeed, for many, the feature 
dimensions that help separate the different 

categories are not well described, even by 
experts.  Assuming that is the case, the 
current results offer bits of both 
encouragement and discouragement 
regarding the potential for using fading to 
enhance training.  On the one hand, the 
fact that naturalistic tasks involve hard-to-
verbalize dimensions (similar in that 
regard to the color saturation dimension 
used in Experiment 7) is encouraging for 
the application of fading. Further, in 
contrast to laboratory tasks which utilize 
relatively low dimensional stimuli, 
naturalistic tasks involve stimuli that might 
potentially be encoded in very high 
dimensional spaces, and identifying the 
relevant dimension(s) will increase in 
difficulty with the number of dimensions.  
On the other hand, the fact that the 
structure of the stimuli is not generally well 
understood in practical domains raises the 
practical question of whether it would 
really be possible to generate "stretched" 
examples to use in training.  (The fact that 
fading has been applied to speech stimuli 
may reflect the fact that this case is 
unusual in that speech-critical acoustic 
features are often both impossible to 
verbalize but very well understood and 
able to be incorporated into artificial 
stimuli.) 

The lack of full understanding of the 
generative process that produces different 
categories of natural stimuli is not 
necessarily a fatal problem, however.  
One potential strategy would be to use 
classification accuracy of a panel of 
human judges (who possess at least some 
competence in the relevant discrimination 
task) to rank the training stimuli in 
difficulty.  Then, instead of constructing 
artificial stimuli with stretched 
intercategory differences, one could 
simply identify whichever natural stimuli 
are most easily classified by the panel.  
These, in turn, could be used early in 
training.  Obviously, the current findings 
do not guarantee that this form of fading 
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will necessarily be effective in training 
natural stimuli, but the current findings are 
consistent with the notion that this 
approach will succeed.  We are currently 
examining this question using several 
different categories of natural stimuli.   
Relatedly, an intriguing recent study by 
Love and Giguere (2011) tried a strategy 
of "idealizing" training, in which they 
deleted the members of each category 
that lay on the "wrong" side of the decision 
boundary that most readily separated the 
stimuli.  This proved quite useful. 

The present experiments explored 
what seemed like the natural starting point 
for research in this area, comparing two 
extreme training regimens (training with 
stretched stimuli versus training with the 
most difficult stimuli).  Given the observed 
benefit of fading, it is worth examining 
whether the details of the fading schedule 
matter, either the level of performance that 
should be maintained during training, or 
whether it might be better to fade on a 
fixed, performance independent schedule.  
Further, it seems possible that the most 
effective training procedure might actually 
involve a blend of fading and difficult 

training.  For example, one could use 
intermittent presentation of stretched 
stimuli while concentrating most of the 
learner's efforts in training on the difficult 
stimuli.  It seems possible that the former 
might aid in periodically reinstating 
attention to dimensions if that is lost from 
time to time, while the latter might be most 
useful in allowing the learner to determine 
decision boundaries and retain these in 
memory. 
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