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Abstract. When a morph face is produced with equal physical contributions from a typical parent 
face and an atypical parent face, the morph is judged to be more similar to the atypical parent. This 
discontinuity between physical and perceptual distance relationships, called the “atypicality bias” 
(Tanaka et al 1998, Cognition 68 199–220), has also been demonstrated with non-face objects 
(birds and cars; Tanaka and Corneille 2007 Perception & Psychophysics 69 619–627). We tested 
whether the atypicality bias can be induced for a novel set of artifi cial objects. Two categories of 
“blob” stimuli were generated, each composed of typical and atypical members. Morphs averaged 
from typical and atypical parent exemplars were used to test the presence of an atypicality bias before 
and after participants were familiarized with blob items. In experiment 1, participants were trained 
to discriminate between the two blob categories. An atypicality bias was evident after, but not prior to, 
category training. In experiment 2, participants rated the pleasantness of the blobs instead of learning 
to categorize them; an atypicality bias was present only after the ratings task. This fi nding suggests that 
relatively passive exposure to exemplars is suffi cient to infl uence perceptions of similarity, and that the 
atypicality bias is a manifestation of this infl uence.
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1 Introduction
A useful method for representing the perceptual similarity relationships among members 
of an object class is to conceive of them as occupying points in a multidimensional space 
(Nosofsky 1986; Shepard 1962). Just as the proximity of cities on a map can be determined 
by comparing the values of each city along the dimensions that defi ne their locations (latitude 
and longitude), the similarity of exemplars in psychological space is a function of their values 
along the n dimensions of the space, where n is the number of features used in evaluating 
their similarity. Among its numerous applications, this framework provides a means of 
operationalizing the concepts of stimulus typicality and atypicality (or distinctiveness): 
exemplars are typical to the extent that they possess values on each dimension that are 
close to the values of most of the other exemplars in the space, and atypical to the extent 
that they possess extreme values on one or more dimensions. Typical exemplars occupy 
densely populated regions of psychological space, a refl ection of their similarity to many 
other exemplars, while atypical exemplars lie in sparsely populated regions of the space. 
A prominent theoretical application of similarity space is Valentine’s (1991) “face–space” 
model, which accounts for typicality effects in face recognition and categorization based on 
the locations of face representations in a multidimensional space (see, eg, Lee et al 2000; 
Leopold et al 2001; Valentine 2001). The multidimensional space framework has also been 
used to describe object similarities in non-face domains (eg Cutzu and Edelman 1996) 
and used in theories of speech perception (Iverson and Kuhl 1995, 2000).
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The distribution of items in dense and sparse regions of similarity space is important because 
it may affect how the items themselves are perceived (eg Krumhansl 1978). Tanaka et al (1998) 
investigated the relationship between typicality and object perception by creating morphs 
comprised of equal physical contributions from a typical parent and an atypical parent. Based 
upon a purely structural metric of similarity, these morphs were equidistant to their typical 
and atypical parents. However, participants tended to perceive the morph as bearing a stronger 
resemblance to the atypical parent. Tanaka et al (1998) demonstrated this “atypicality bias” 
using a preference task in which the two parent faces were presented either immediately before 
(experiments 1, 2, and 4) or alongside (experiment 3) their morph; participants were asked to 
choose to which parent the morph was more similar. Across experiments, the atypical parent 
was chosen on 56% to 63% of trials (M = 60%). In a follow-up study, Tanaka and Corneille 
(2007, experiment 3) extended the atypicality bias to bird and car stimuli, demonstrating that 
the bias is not a face-specifi c effect. Tanaka et al (2011) found that children as young as 3–4 
years show an atypicality bias with faces and birds, indicating that knowledge of category 
structures can develop with relatively little perceptual experience.

Tanaka and colleagues accounted for their results using an attractor fi eld model of face 
and object perception (Tanaka and Corneille 2007; Tanaka et al 1998; see also Humphreys and 
Johnson 2007). According to attractor fi eld theory, every exemplar represented in memory is 
associated with a range of stimulus inputs that will activate that representation, as is the case 
when a familiar face is recognized despite being viewed from an unusual angle. This “attractor 
fi eld” corresponds to an area of similarity space surrounding each exemplar; stimuli falling 
within this area are suffi ciently similar to the exemplar to activate its stored representation 
when presented. Tanaka and colleagues proposed that items in densely populated regions 
of similarity space possess relatively small attractor fi elds because the attractor fi elds of 
many neighboring representations restrict their range. The attractor fi elds of items in sparsely 
populated regions, by contrast, are much larger owing to the lack of competition from nearby 
representations. Atypical exemplars, then, should generally possess larger attractor fi elds 
than typical exemplars. This theory provides a ready account of the atypicality bias: a morph 
which lies at the midpoint of a typical and atypical parent in similarity space is more likely to 
be drawn to the larger attractor fi eld of the atypical parent, manifest perceptually as greater 
similarity to that parent.

Although the attractor fi eld model provides an intuitive account of the atypicality bias and 
was demonstrated to be computationally feasible by neural network simulations (Tanaka et al 
1998), the cognitive mechanisms underlying the phenomenon remain unknown. A principal 
question concerns the means by which atypical items come to be perceptually “attractive.” 
The physical structure of the stimuli alone might not be suffi cient to produce an atypicality 
bias. That is, because one cannot know which members of an object class are (a)typical until 
one has accrued experience with members of that class, the atypicality bias might emerge 
only after such learning has occurred. In this scenario, a given set of stimuli might shift from 
eliciting no bias to eliciting an atypicality bias once knowledge of the associated category 
structure has been acquired.

This proposal is supported by past research indicating that category learning can alter 
the perception of the categorized objects themselves. For example, Schyns and colleagues 
(Schyns and Rodet 1997; Schyns et al 1998) have demonstrated that feature learning in novel 
stimuli can be guided by category diagnosticity, and that the choice of “functional” (category-
relevant) features early in learning can affect the perception of subsequent exemplars. By 
this view, the features that drive the perception of a given stimulus are not fi xed structural 
characteristics of the stimulus but are at least in part a product of the demands of prior learning 
within the domain (Schyns and Rodet 1997). Identical stimuli, then, might be perceived 
differently before and after such learning has occurred.
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Goldstone and colleagues have investigated how changes in perception with category 
learning might refl ect changes in the dimensions of similarity space. Goldstone (1994) 
found that category training heightened perceptual sensitivity to category-relevant 
stimulus dimensions (and, in some cases, diminished sensitivity to irrelevant dimensions). 
Goldstone and Steyvers (2001) examined two means by which this sensitization can 
occur: the differentiation of relevant and irrelevant dimensions, and selective attention to 
relevant dimensions. Goldstone et al (2001) provided evidence that knowledge of category 
membership alone can infl uence ratings of similarity, such that within-category members are 
judged to be more similar to one another than between-category members on the basis of 
their shared category affi liation  (see also Corneille et al 2006). However, these researchers 
also demonstrated that category training can create perceptual changes at the level of the 
mental representation of an object: within-category exemplars were not only perceived to be 
more similar to one another following training, they were perceived to be more similar to a 
neutral stimulus with no categorical association. All of these fi ndings suggest that learning 
a category structure produces changes in similarity space, an assumption built into some 
models of categorization (eg Nosofsky 1986).

One factor driving such changes may be the formation of dense and sparse regions of 
similarity space as the central tendency of a category is learned. According to Krumhansl’s 
(1978) distance–density model, the similarity of two exemplars is jointly determined by their 
distance in the space and the density of the regions in which they lie. The distance–density 
model gives the formula for calculating inter-item similarities as follows:

( , ) ( , ) ( ) ( )sim e e d e e e e1 2 1 2 1 2ad bd= + +  ,

where e1 and e2 are exemplars, d(e1, e2) is their inter-point distance in similarity space, 
d(e1) and d(e2) are the spatial densities of exemplars in the regions surrounding the two 
exemplars, and a and b are weights applied to those densities. The central prediction of the 
model is that two exemplars of equal physical distance will be less similar to each other if 
located in a dense region of the space than if located in a sparse region of the space. Since, 
as noted above, dense and sparse regions of space are established through experience with 
category members, Krumhansl’s (1978) model is consistent with the possibility that category 
learning results in an expansion of dense regions of the space, contraction of sparse regions 
of the space, or both. These dynamics of similarity space may underlie the atypicality bias 
if the dimensions of the space are altered in such a way that a morph otherwise perceptually 
equidistant from its typical and atypical parent is drawn toward its atypical parent (or, 
alternatively, drawn away from its typical parent).

The present experiments were designed to determine whether the atypicality bias emerges 
as a function of perceptual experience with an object class. This possibility cannot be tested 
with stimuli from familiar categories such as faces, birds, and cars because the structure of 
those categories is well known to participants pre-experimentally. Hence, the magnitude of 
the atypicality bias before and after category learning cannot be established. Nor is it clear 
what stimulus properties (eg color, shape, size, surface properties) are driving the judgments 
of typicality that distinguish typical and atypical faces, birds, and cars. To address the 
shortcomings of real-world objects, we created shape stimuli called “blobs” (see, eg, Curran 
et al 2002) with which participants had no pre-experimental familiarity. Sample blobs appear 
in fi gure 1. Each category of blobs was based on a prototype whose structure varied randomly 
within user-defi ned parameters (for details of blob generation, see section 2.1). Typical 
category members were created by making small variations on this prototype, rendering them 
highly similar to the prototype and each other. Atypical members were allowed a greater 
magnitude of variance from the prototype, and were thus highly distinct from one another 
and the typical exemplars.
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Importantly, each category contained an equal number of typical and atypical exemplars. 
Note that within natural categories such as those used in previous studies of the atypicality 
bias, structural typicality and frequency of occurrence are generally confounded, as atypical 
exemplars tend to be fewer in number and encountered less frequently than typical exemplars 
(Barsalou 1985). Thus, although a similarity space-based account of the atypicality bias 
implies that the effect is driven by the structural uniqueness of atypical exemplars, the potential 
contribution of the relative rarity of such exemplars complicates this interpretation. In the 
current study, we used artifi cial stimuli to disentangle these two elements of distinctiveness, 
holding frequency constant and manipulating only the structural typicality of blob exemplars.

Within each blob category, morphs of every pairwise combination of typical and atypical 
parents were created. Pilot testing using the same preference task as Tanaka et al (1998) 
established two categories for which no inherent bias was present. In experiment 1, participants 
completed the preference task before and after learning to discriminate exemplars of these 
two categories through a training task. We hypothesized that if knowledge of a category 
structure yields an atypicality bias, these blobs should elicit no bias before training but an 
atypicality bias after training. In experiment 2, the category learning task from Experiment 
1 was replaced with pleasantness ratings of the same blob exemplars to determine whether 
explicit category training is necessary to observe an atypicality bias.

2 Experiment 1
2.1 Method
2.1.1 Participants. Twenty-fi ve University of Victoria undergraduates participated for bonus 
credit in a psychology course.

2.1.2 Materials. Typical blobs, atypical blobs, and morphs were created with Blob Maker, 
a Matlab-based program. Blob Maker produces categories of blobs by creating a category 
prototype and varying the prototype to generate category exemplars. Exemplars were created 
for pilot testing in two rounds; the parameters used differed slightly between the two, and 
these differences are noted below.

Prototypes were created as follows: fi rst, a circle was divided evenly by either 15 or 17 
rays originating at its center. Second, a point was placed at a randomly determined position 
along each ray. Third, adjacent points were connected with a straight line, creating a jagged 
outline. The outline was fi lled in with a blue color to complete the prototype. Exemplars 
were variations on the prototype in which the positions of the points on each ray were 
allowed to shift relative to their locations on the prototype. Typical exemplars were allowed 
up to 5% or 3% –7% deviation from the prototype, while atypical exemplars were allowed up 
to 15% or 8% –12% deviation. Thus, within-category blobs refl ected a common underlying 
structure (that of the prototype), with typical members more homogeneous than atypical 
members by virtue of closer adherence to that structure.

       Atypical parent                                                 Morph                                               Typical parent

Figure 1. Sample typical and atypical parent blobs and their morph.
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Category exemplars were selected for use in the pilot studies according to the judgment of 
the experimenters, a procedure meant to ensure that the typical blobs used in the experiment 
were adequately discriminable from one another, and that the atypical blobs bore suffi cient 
resemblance to the category prototype to be identifi ed with that category. Each typical 
exemplar was then morphed with each atypical exemplar. Morphs were created by averaging 
the lengths from the origin of each corresponding point of a given typical–atypical pair.

24 categories were pilot tested via a preference task also used in experiments 1 and 2 
and described in greater detail below. Participants saw two blobs on opposing sides of the 
screen, one a typical parent and the other an atypical parent. The morph of the two parents 
then appeared in a central position, and participants indicated whether the central blob was 
more similar to the blob on the left or to the blob on the right. 16 parent–morph–parent triads 
from each pilot category were presented in randomly intermixed order.

Of the 24 categories tested, two were selected for the experiment based on the criteria 
that they (a) were free of bias in the preference task (ie the atypical and typical parents were 
chosen approximately equally often); (b) were suffi ciently dissimilar to one another that 
successful category training was possible; and (c) were suffi ciently similar to one another 
that category learning would require careful attention to fi ne-grained structural characteristics 
of the blobs. The two categories are displayed in fi gure 2. The atypical parent was selected as 
bearing greater similarity to the morph than the typical parent on 47.0% and 52.2% of trials 
in categories 1 and 2, respectively. Neither of these values differed signifi cantly from the 
50% (unbiased) level (both ps > 0.20). Each blob category was assigned to “family A” for 
half of participants and to “family B” for the other half. The experiment was conducted with 
E-Prime software (http://www.pstnet.com).

2.1.3 Procedure. The experiment consisted of three phases: an initial preference task, 
category training to criterion, and a second, post-training preference task. Participants were 
tested individually. Instructions for the pre-training preference task informed participants 
that they would be seeing two images on opposing sides of the screen followed by a third 
image positioned centrally between the fi rst two. Their task was to indicate whether the 
central image was more similar to the one on the left or to the one on the right. Participants 
were told to make quick “gut” responses and that a maximum of 3 s was allowed for each 
response. Each trial began with a 500 ms fi xation cross positioned in the center of the screen, 
followed by the presentation of two parent blobs, one typical and one atypical, approximately 
5 cm to the left and right of center. Typical and atypical parents were counterbalanced with 
respect to screen position. After 2500 ms the morph of the two parents appeared in the center 
of the screen along with the words “Left or Right?” below. Participants pressed the “1” key 
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Figure 2. Typical and atypical members of the two blob families used in experiments 1 and 2.
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to indicate that the left blob was more similar to the center blob or the “0” key to choose the 
right blob. All three items remained on the screen until a response was made or the 3 s time 
limit elapsed, at which time the following trial began. The preference task contained 32 trials, 
one for each blob triad from the two categories.

The category training task followed. Participants were informed that they would be 
viewing a series of images, each of which belonged either to “family A” or to “family B”, 
and that their task was to indicate to which family each image belonged. Participants were 
told that they would initially be guessing, but that they would learn the correct responses 
by paying attention to feedback on each trial. Category training was divided into blocks of 
16 trials. In each block, the 8 “A” and 8 “B” blobs were presented for category judgments in 
a random order. On each trial, a blob was presented in the center of the screen with the words 
“Family A or Family B” below. Responses were made by pressing the “A” key to signify 
a “family A” judgment or the “L” key to signify a “family B” judgment. Blobs remained on the 
screen until a response was made. Responses initiated immediate feedback of “CORRECT!” 
in blue type or “Incorrect” in red type that remained on the screen for 1000 ms. The following 
trial began immediately thereafter. Categorization trials continued until three consecutive 
blocks were completed with no more than one error per block. Upon reaching this criterion, 
participants graduated to the post-training preference task.

In the post-training preference task, the same blob triads as in the pre-training task 
were presented in a new random order and with the positions of the typical and atypical 
parents reversed relative to their positions in the pre-training phase (ie a triad displayed with 
the arrangement atypical-morph-typical pre-training was displayed typical-morph–atypical 
post-training). Thus, the post-training phase consisted of 32 preference judgments.

2.2 Results and discussion
All twenty-fi ve participants successfully reached the performance criterion in the category 
training phase and advanced to the post-training preference task. Preference task trials in 
which no response was given within the time limit (2.1% of trials pre-training, 0.9% of trials 
post-training) did not fi gure in the analyses of preference data.

Participants required an average of 9.4 (SD = 5.8) training blocks to reach criterion in the 
category training phase. Categorization accuracy was reliably higher for typical blobs than 
for atypical blobs (Mtypical = 90.6%, Matypical = 80.7%, t24 = 8.508, p < 0.001). Categorization 
RTs were reliably lower for typical blobs than for atypical blobs (Mtypical = 921 ms, 
Matypical = 1070 ms, t24 = 4.785, p < 0.001).

The mean pre- and post-training atypicality bias is displayed for each family in fi gure 3. 
In the pre-training preference task, the atypical parent was chosen as more similar to the 
morph on 52.3% of trials; after category training, the atypical parent was chosen on 58.3% 
of trials. A 2 (preference phase: pre-training or post-training) × 2 (family: 1 or 2) repeated-
measures ANOVA indicated a signifi cant increase in the atypicality bias from pre- to 
post-training (F1, 24 = 8.980, p < 0.01, p

2
h  = 0.272). Neither the main effect of family nor the 

preference phase × family interaction were signifi cant (both ps < 0.37). t-tests confi rmed 
that the pre-training bias was not signifi cantly greater than the 50% level in either family 
(Mfamily1 = 50.3%, Mfamily2 = 54.5%), though it approached signifi cance in the latter case 
( p = 0.08). The level of bias following training was signifi cantly greater than 50% in both 
families (MFamily1 = 57.9%, t24 = 3.542, p < 0.01; Mfamily2 = 58.7%, t24 = 2.972, p < 0.01). The 
increase in atypicality bias from pre-training to post-training was also signifi cantly greater 
than 50% when measured by item (t31 = 2.232, p < 0.05), indicating that the bias was not 
driven by a minority of parent–morph–parent t riads but was consistently observed across the 
stimulus set. Overall, nineteen out of twenty-fi ve participants showed a directional increase 
in atypicality bias after category training.
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These results support the hypothesis that the atypicality bias is observed following, but not 
prior to, category learning within a novel stimulus domain. They do not, however, imply that 
the explicit category training undertaken in experiment 1 is necessary to develop an atypicality 
bias. Prototype extraction tasks have demonstrated that information about family resemblance 
within a stimulus domain can be gleaned incidentally from exposure to exemplars in non-
categorization tasks (eg Knowlton and Squire 1993; Smith 1998). If such information drives 
the atypicality bias, it might be the case that any task involving visual examination of the stimuli 
would foster incidental feature learning suffi cient to produce the bias. We tested this possibility 
in experiment 2 by replacing the category training participants received in experiment 1 with 
a blob pleasantness rating task. If the visual analysis required to judge the pleasantness of 
blobs confers enough information about their normative structural attributes to allow learning 
of the associated category structures, participants’ preference task responses should evidence 
an atypicality bias following, but not prior to, the pleasantness rating phase. This result would 
suggest that the atypicality bias arises under general experience-based learning conditions and 
is not limited to circumstances in which item categories are learned explicitly.

3 Experiment 2
3.1 Method
3.1.1 Participants. Thirty University of Victoria undergraduates participated for bonus credit 
in a psychology course.

3.1.2 Materials. The materials were identical to those used in experiment 1.

3.1.3 Procedure. The procedure was identical to that of experiment 1, except that a 
pleasantness rating task was administered between the two preference-judgment tasks 
instead of category training. Prior to making the pleasantness ratings, participants were 
informed that they would be presented with a series of images and that they would be asked 
to rate the pleasantness of each image on a scale of 1 (“not pleasant”) to 7 (“very pleasant”). 
Participants were encouraged to use the entire scale in making their judgments and were 
told to make quick responses based on their fi rst instinct. As in experiment 1, they were 
informed that they would be seeing the same group of 16 images over repeated blocks.
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Figure 3. Percentage of trials on which the morph was called more similar to the atypical parent before 
and after category training in experiment 1. Error bars represent one standard error of the mean. The 
dashed line represents the 50% (unbiased) level.
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Blobs were presented in the center of the screen and remained until the participant made 
a response via key press. A blank 750 ms interval separated each trial. As in experiment 1, 
trials were organized in blocks consisting of a random ordering of the 8 exemplars from each 
family. As there was no basis for establishing a criterial performance level akin to that of the 
category training in experiment 1, each participant completed 10 blocks, a number chosen to 
approximate the average amount of exemplar exposure participants in experiment 1 received 
during category training (M = 9.4 blocks). Therefore, judgments were made to each of the 16 
blobs 10 times for a total of 160 pleasantness rating trials.

3.2 Results and discussion
The data of one participant repeatedly failing to respond within the time limit during the 
preference task were removed prior to analysis. Among the remaining participants, responses 
not made before the deadline comprised 1.9% and 1.5% of trials in the fi rst and second 
preference tasks, respectively, and were not part of subsequent analyses.

Pleasantness ratings for typical and atypical blobs did not differ signifi cantly (Mtypical = 3.73, 
Matypical = 3.53, t28 = 1.701, p = 0.10). RTs during the pleasantness task were similar for typical 
and atypical blobs (Mtypical = 1590 ms, Matypical = 1650 ms, t28 = 1.264, p = 0.22).

Preference task results were very similar to those observed in experiment 1 (see fi gure 4). 
The atypical parent was chosen as more similar to the morph on 53.1% of trials in the initial 
preference task and on 59.6% of trials following the pleasantness ratings task. A preference 
phase × family ANOVA revealed that this increase in the atypicality bias from the pre- to post-
pleasantness task was signifi cant (F1, 28 = 4.680, p < 0.05, p

2
h  = 0.143). The magnitude of the 

increase in bias was moderately greater for family 2 than for family 1, but the associated 
preference phase × family interaction was not signifi cant ( p = 0.13). The main effect of 
family was non-signifi cant ( p = 0.52). t-tests again confi rmed that the atypicality bias did not 
signifi cantly exceed the 50% level for either family in the fi rst preference task (Mfamily1 = 53.8%, 
Mfamily2 = 52.7%; both ps > 0.22), but was signifi cantly greater than 50% for both families in 
the second (Mfamily1 = 57.0%, t28 = 3.061, p < 0.01; Mfamily2 = 62.1%, t28 = 3.765, p < 0.001). 
As in experiment 1, the increase in atypicality bias following the pleasantness task was also 
signifi cantly greater than 50% when measured by item (t31 = 2.730, p < 0.05). Overall, twenty 
out of twenty-nine participants showed a directional increase in atypicality bias after the 
pleasantness rating task.

Figure 4. Percentage of trials on which the morph was called more similar to the atypical parent before 
and after the pleasantness rating task in experiment 2. Error bars represent one standard error of the 
mean. The dashed line represents the 50% (unbiased) level.
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The results of experiment 2, then, were strikingly similar to those of experiment 1. The 
central fi nding, a signifi cant increase in the atypicality bias following the pleasantness rating 
task, suggests that the visual inspection of the blob stimuli necessary to produce ratings 
of pleasantness was suffi cient to make salient the distinction between typical and atypical 
exemplars, and that this indirect form of training changed the perception of those exemplars. 
Indeed, the 6.5% increase in the atypicality bias observed in experiment 2 mirrored the 6.1% 
increase following explicit category training in experiment 1. The similar magnitudes of 
these increases suggest that category training and pleasantness ratings exerted a comparable 
infl uence on the perception of the blob exemplars. We discuss the implications of this result 
below.

4 General discussion
These results support the hypothesis that the atypicality bias represents a change in object 
perception that develops as a function of perceptual experience with a given class of stimuli. 
The blob morphs used in the present experiments were called more similar to their typical 
and atypical parents with approximately equal frequency when fi rst encountered, as measured 
by pilot testing and the pre-training preference tasks. After repeated exposure to the parent 
exemplars via category training (experiment 1) or a pleasantness rating task (experiment 2), 
however, participants selected the atypical parent as more similar to the morph on a 
signifi cantly greater proportion of trials. This fi nding suggests that previous demonstrations 
of the atypicality bias (Tanaka and Corneille 2007; Tanaka et al 1998) did not require a 
learning phase because they used stimuli from commonly encountered object classes (faces, 
birds, and cars) for which the analogous experience had already accrued through everyday 
exposure. The present experiments may be viewed as having captured the emergence of the 
atypicality bias during a single laboratory session.

What aspects of category training lead to the development of the atypicality bias? In the 
process of discerning the structural features of the stimuli (or informative fragments thereof; 
eg Hedge et al 2008) that are diagnostic of category membership, individuals become aware 
of the normative appearance of those features as well as deviations from the norm, thus 
establishing a sense of typical and atypical category exemplars, respectively. Evidence that 
this distinction took place in the current experiments comes from the result that atypical 
exemplars were categorized slower and less accurately than typical exemplars in experiment 
1, a common fi nding in research on natural categories (McCloskey and Glucksberg 1979; 
Murphy and Brownell 1985). We propose that learning what constitutes category typicality 
and atypicality alters the mental representation of the exemplars within that category, and that 
this alteration results in the observed atypicality bias.

The relative diffi culty of classifying atypical exemplars in experiment 1 mirrors results 
from research on natural categories, and thus represents a desirable quality of the present 
blob stimuli. However, it also constitutes a confounding of structural typicality and ease of 
classifi cation. Consequently, it is possible that the increased selection of atypical exemplars 
in the subsequent preference task was infl uenced by the fact that these exemplars posed a 
particular challenge in the category training phase. Indeed, as Nosofsky (1991) has discussed 
in detail, stimulus-driven biases can be diffi cult to disentangle from response biases in 
judgments of similarity. In the present case, evidence suggests that the atypicality bias was 
not driven by the diffi culty of categorizing atypicals per se. In experiment 2, a signifi cant 
atypicality bias followed a pleasantness rating task in which explicit categorization 
judgments were not made and neither mean ratings nor RT differed as a function of typicality. 
Moreover, in a previous experiment (not reported here) we tested a different set of blobs in 
which the typical items from one category were very similar to the typical items from the 
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second category. As a result of this similarity, participants were faster and more accurate in 
categorizing atypical exemplars, the opposite of the pattern found in the present experiments. 
Despite the atypical advantage in categorization, an atypicality bias of roughly the same 
magnitude as those reported here emerged following category training. Thus, the learning of 
category structure, not categorization performance on typical versus atypical items, appears 
to be the critical element in producing the atypicality bias.

If category learning is the mechanism underlying the atypicality bias, why was the 
pleasantness rating task in experiment 2 associated with as great an increase in the bias as 
the category training task in experiment 1? A partial explanation might be a ceiling on the 
level of atypicality bias measurable via the preference task. Previous experiments conducted 
in our lab have consistently found atypicality bias levels at roughly 60%, as has past work 
using stimuli from natural categories (Tanaka and Corneille 2007; Tanaka et al 1998), though 
bird stimuli may an exception (Tanaka and Corneille 2007; Tanaka et al 2011). Perhaps 
category training is more directly associated with the development of the atypicality bias, but 
both the category training and pleasantness rating manipulations in the present experiments 
were suffi cient to raise the atypicality bias to maximal levels.

Whether or not such a limit characterizes the measurement of the atypicality bias, the 
signifi cant increase in the bias following pleasantness ratings suggests that feedback-driven 
category training is not necessary for its emergence. Rather, the atypicality bias appears to 
arise via the ability of the perceptual system to discern rapidly the structural regularities of 
a category of stimuli even when the task at hand does not necessitate category learning. By 
this reasoning, any form of perceptual experience with the stimuli that makes evident the 
distinction between typical and atypical category members might be expected to produce 
the effect. This account of the present results dovetails with the Tanaka et al (2011) fi nding 
of an atypicality bias in 3–4-year-old children, who have amassed far less perceptual 
categorization experience than adults. Given the broad boundary conditions that characterize 
the effect, the atypicality bias would appear to be a pervasive perceptual phenomenon.

We argued above that the emergence of the atypicality bias with experience can be 
couched in terms of theories that express exemplar similarities as a function of their distances 
in a multidimensional psychological space (eg Goldstone 1994; Krumhansl 1978; Tanaka 
et al 1998). We believe that the present data are consistent with the view that: (a) the accrual 
of experience with a category of stimuli populates the central and peripheral regions of the 
associated similarity space with typical and atypical category members, respectively; (b) the 
dimensions of the space are altered in the process, becoming relatively more compact in 
the sparsely populated regions of the similarity space than in the densely packed regions 
and producing altered similarity relationships between exemplars; and (c) these relationships 
conform to the predictions of Krumhansl’s (1978) distance–density model, which holds that 
items in sparsely populated regions of the space will be more similar to each other than 
items of equivalent physical distance in densely populated regions. We depict these general 
dynamics of similarity space in fi gure 5.

The hypothesized changes in similarity space with category learning depicted in fi gure 5 
and the resulting emergence of the atypicality bias are also broadly consistent with Love and 
colleagues’ supervised and unsupervised stratifi ed adaptive incremental network (SUSTAIN) 
model of category learning (Love et al 2004). SUSTAIN represents similar category 
exemplars (such as the typical blobs in the present experiments) as clusters embedded 
in a multidimensional similarity space. The model forms new clusters in remote areas of 
similarity space when distinctive items are encountered, a mechanism that could allow it to 
model the effects of learning on the atypicality bias reported here. SUSTAIN also allows for 
both supervised and unsupervised learning of category structure, consistent with the present 
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fi nding of an atypicality bias following both feedback-driven (experiment 1) and relatively 
implicit (experiment 2) category learning.

The result of such learning is that a morph positioned at the midpoint of the physical 
distance between two parents will appear more similar to the parent residing in the more 
compact, sparsely populated region of the space, producing the atypicality bias reported here. 
The present experiments serve as further reminders that our perceptions of similarity are not 
fi xed, but are constantly being formed and reformed by category experience.
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Figure 5. A depiction of hypothetical changes in similarity space with stimulus experience theorized to 
underlie the development of the atypicality bias. Blobs displayed constitute family 1 from the current 
experiments. Atypical exemplars are positioned at the periphery of the space; typical exemplars occupy 
the central portions of the space. Before experience with category exemplars is accrued (top panel), 
psychological distances between exemplars are characterized by a Euclidean metric across the space, 
and a 50–50 morph of a typical and an atypical exemplar is equidistant from both parents (dm, t = dm, a). 
After perceptual experience (bottom panel), the dimensions of the space are stretched as a decreasing 
function of distance from the center of the space. The resulting shift in the relative positions of the 
exemplars produces the atypicality bias (dm, t > dm, a).
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