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Abstract Individuals with autism spectrum disorder (ASD)
show atypical patterns of learning and generalization. We
explored the possible impacts of autism-related neural ab-
normalities on perceptual category learning using a neural
network model of visual cortical processing. When applied
to experiments in which children or adults were trained to
classify complex two-dimensional images, the model can
account for atypical patterns of perceptual generalization.
This is only possible, however, when individual differences
in learning are taken into account. In particular, analyses
performed with a self-organizing map suggested that indi-
viduals with high-functioning ASD show two distinct gen-
eralization patterns: one that is comparable to typical
patterns, and a second in which there is almost no general-
ization. The model leads to novel predictions about how
individuals will generalize when trained with simplified
input sets and can explain why some researchers have failed
to detect learning or generalization deficits in prior studies
of category learning by individuals with autism. On the
basis of these simulations, we propose that deficits in basic
neural plasticity mechanisms may be sufficient to account
for the atypical patterns of perceptual category learning and
generalization associated with autism, but they do not ac-
count for why only a subset of individuals with autism
would show such deficits. If variations in performance across
subgroups reflect heterogeneous neural abnormalities, then
future behavioral and neuroimaging studies of individuals
with ASD will need to account for such disparities.
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Autism spectrum disorder (ASD) is a developmental disor-
der characterized by a variety of cognitive, social, and
behavioral impairments. Among other symptoms, individu-
als with ASD may exhibit deficits in social interaction,
difficulties in verbal and nonverbal communication, repeti-
tive or stereotyped behavior, learning difficulties, and
extreme fluctuations in mood (American Psychiatric
Association, 2000). Individuals with ASD also show atypi-
cal perceptual processing (see Dakin & Frith, 2005, for
review), including superior perceptual discrimination in
some tasks (Mottron, Dawson, Soulières, Hubert, & Burack,
2006; Plaisted, O’Riordan, & Baron-Cohen, 1998) but diffi-
culties in perceptual learning and generalization in others
(Church et al., 2010; Gastgeb, Rump, Best, Minshew, &
Strauss, 2009; Klinger & Dawson, 2001; Klinger, Klinger,
& Pohlig, 2007). Perceptual deficits, in particular, are thought
to reflect abnormalities in cortical structure and function in
individuals with ASD (Markram & Markram, 2010;
Rubenstein & Merzenich, 2003; Spencer et al., 2000).

Researchers have proposed several explanations for the
variations in perceptual processing associated with ASD.
Qualitative theories include the ideas of weak central coher-
ence (Frith, 1989; Happé & Frith, 2006) and enhanced per-
ceptual functioning (Mottron & Burack, 2006; Mottron et al.,
2006), as well as the reduced perceptual similarity hypothesis
(Plaisted, 2001). Neurally based accounts of perceptual defi-
cits have pointed to effects of cortical underconnectivity and
disrupted cortical connectivity (Just, Cherkassky, Keller, &
Minshew, 2004; Kana, Libero, & Moore, 2011), poor func-
tioning of the dorsal/magnocellular system (Spencer et al.,
2000), minicolumn pathology (Casanova, Buxhoeveden,
Switala, & Roy, 2002), and an imbalance of neural excitation
and inhibition (Rubenstein & Merzenich, 2003). Such quali-
tative explanations of dysfunction in perception provide plau-
sible accounts of why perceptual processing and learning
might differ in individuals with ASD.
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Dysfunctional learning and generalization processes can
also potentially contribute to atypical perceptual processing
in individuals with ASD. Although researchers historically
have debated about how autism affects learning processes
(reviewed by Dawson, Mottron, & Gernsbacher, 2008),
recent studies have shown clear early learning differences
relative to typically developing (TD) individuals (Solomon,
Smith, Frank, Ly, & Carter, 2011; Yechiam, Arshavsky,
Shamay-Tsoory, Yaniv, & Aharon, 2010). Deficits in the
generalization of learned perceptual and cognitive skills
have long been noted as a feature of ASD (Lovaas,
Koegel, & Schreibman, 1979; Schriebman, Koegel, &
Craig, 1977; Solomon et al., 2011). The cumulative effects
of abnormal learning experiences during development could
lead to systematic differences in how individuals with ASD
represent perceptual events.

Given that perception and learning processes differ in
individuals with autism, one might expect that their perceptual
category learning might also be atypical. Consistent with this
prediction, several studies have demonstrated atypical proto-
type formation or categorization by individuals with ASD
(Church et al., 2010; Gastgeb, Dundas, Minshew, & Strauss,
2012; Gastgeb et al., 2009; Gastgeb, Wilkinson, Minshew, &
Strauss, 2011; Klinger & Dawson, 2001; Klinger et al., 2007).
Other studies, however, have reported that perceptual category
learning by individuals with ASD is relatively unimpaired
(Bott, Brock, Brockdorff, Boucher, & Lamberts, 2006;
Froehlich et al., 2012; Molesworth, Bowler, & Hampton,
2005; Soulières, Mottron, Giguère, & Larochelle, 2011;
Soulières, Mottron, Saumier, & Larochelle, 2007; Vladusich,
Olu-Lafe, Kim, Tager-Flusberg, & Grossberg, 2010). These
seemingly contradictory findings may reflect differences in
methodology, the ages of the participants, their levels of
cognitive ability, or the high variability of perceptual perfor-
mance across individuals with ASD (Mottron et al., 2006).
Alternatively, these findings may reflect interactions between
neural deficits and task difficulty or complexity (Samson,
Mottron, Jernel, Belin, & Ciocca, 2006).

Past work on category learning by individuals with ASD
has focused on possible differences in their abilities to
categorize items on the basis of similarities between catego-
ry members. Researchers initially reported that children with
ASD were only able to classify items using rules, showing
limited capacity to recognize novel, prototypical stimuli as
being members of a learned category (Klinger & Dawson,
2001). Later studies, however, showed that adults with high-
functioning ASD (HFASD) were able to recognize proto-
types (Bott et al., 2006; Froehlich et al., 2012; Molesworth,
Bowler, & Hampton, 2008; Soulières et al., 2011), suggest-
ing that all forms of perceptual category learning were intact
in adults. Recently, several laboratories have independently
converged on a task for assessing visual category learning
by individuals with ASD that involves training individuals

to classify abstract patterns of dots into categories (Church
et al., 2010; Froehlich et al., 2012; Gastgeb et al., 2012;
Schipul, 2012; Vladusich et al., 2010). This image classifi-
cation task is a classic method in category-learning research
(Posner, Goldsmith, & Welton, 1967; Posner & Keele,
1968) that has several advantages, including the following:
(a) it uses abstract, unfamiliar shapes or dot patterns, thus
controlling for impacts of past experience; (b) the shapes
have no direct social relevance; and (c) task performance is
not easily improved by applying simple rules. The task has
been extensively analyzed (Ashby & Ell, 2001; Nosofsky &
Zaki, 1998; Smith & Minda, 2001) and has been used in
several neuroimaging studies (Little & Thulborn, 2006;
Nosofsky, Little, & James, 2012; Reber, Stark, & Squire,
1998). As in the earlier categorization experiments, some of
these studies reported atypical prototype identification by
individuals with HFASD (Church et al., 2010; Gastgeb et al.,
2012), whereas others reported typical prototype formation
(Froehlich et al., 2012; Schipul, 2012; Vladusich et al., 2010).

In the following sections, we first discuss how known
neural abnormalities associated with autism may contribute
to observed deficits in category learning and how computa-
tional models can be used to simulate the effects of such
abnormalities. We then describe a series of simulations that
clarify which neurally based manipulations satisfactorily
explain the deficits in category learning observed in past
behavioral experiments, and that shed new light on possible
sources of the discrepant findings from past studies of
categorization by individuals with autism.

Theoretical approach

Numerous quantitative models of category learning are
available that can account for the typical patterns of gener-
alization (reviewed by Pothos & Wills, 2011; Wills &
Pothos, 2012), including models that incorporate hypothe-
ses about the neural substrates of perceptual category learn-
ing (Ashby & Maddox, 2005, 2010). In principle, any of
these quantitative/computational models would be able to
generalize appropriately after learning to classify dot pat-
terns, and such models might be able to account for the
different generalization patterns observed in individuals
with ASD. In practice, however, none of these models
appear to have been used to predict how individuals with
ASD should generalize in specific perceptual category-
learning tasks.

General approach to simulating neural substrates of category
learning

Existing neurocomputational models of category learning
have traditionally focused on assigning different computational
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functions to specific brain regions. Several different brain
regions are engaged when typical individuals learn to clas-
sify dot patterns, including multiple cortical regions, the
hippocampal region, and the basal ganglia (Daniel et al.,
2011; Nosofsky et al., 2012). Abnormalities in all of these
regions have been reported in individuals with autism
(reviewed by Penn, 2006; Schroeder, Desrocher, Bebko, &
Cappadocia, 2010), and thus could potentially contribute to
atypical category learning. The present simulations focus on
visual cortical pathways because (1) processing in these
regions is known to be abnormal in individuals with autism
(Baruth, Casanova, Sears, & Sokhadze, 2010; Behrmann,
Thomas, & Humphreys, 2006; Simmons et al., 2009;
Vandenbroucke, Scholte, van Engeland, Lamme, &
Kemner, 2008); (2) abnormal processing of visual inputs
would necessarily impact all subsequent stages of neural
processing; and (3) researchers have theorized that learning
to classify dot patterns in tasks such as the one used by
Church et al. (2010) is especially dependent on visual cortical
regions (Ashby & Maddox, 2005). A basic assumption
underlying the present simulations is that learning of new
perceptual categories requires adjustments within cortical
circuits, and that abnormalities in the neural mechanisms
that enable such adjustments can lead to atypical category
formation and generalization. This assumption naturally
leads to the question of when and how such neural
abnormalities will manifest themselves in perception
and behavior.

The aim of the present simulations was not to evaluate
how well existing neurocomputational models of either cat-
egory learning or autism can explain perceptual generaliza-
tion by individuals with ASD. Rather, a “theory-neutral”
model of visual cortical processing was tested (described
below). This model was not originally designed to account
for either autistic deficits or perceptual category-learning
phenomena. Using it as the foundation of our simulations
made it possible for us to objectively evaluate whether
abnormalities in learning and stimulus processing might
account for the atypical generalization observed in individ-
uals with autism. A potential concern in any modeling effort
is that it is relatively easy to construct and customize a
computational model to replicate almost any pattern of data,
given a sufficient number of adjustable parameters. The
present simulations obviate this problem by using a compu-
tational model designed by another laboratory, for a differ-
ent purpose, as the present model’s starting point, and by
limiting the adjustment of parameters to increases or
decreases of a single parameter per simulation (i.e., no
attempt was made to identify an optimal set of parameter
settings). This approach greatly constrains any opportunity
for customization of the model to fit the data (Wills &
Pothos, 2012). Modeling empirical data using basic neural
network parameter manipulations provides a means of

quantitatively examining the potential etiological factors
involved in ASD.

Simulating dysfunctional neural plasticity and homeostasis
Subcellular structural and functional abnormalities are
thought to contribute to the neurological problems associated
with autism. For example, genetic studies have indicated that
ASD is associated with a greater than typical occurrence of
mutation in the genes affecting synaptogenesis and synaptic
function (Auerbach, Osterweil, & Bear, 2011; Bourgeron,
2009). Ramocki and Zoghbi (2008) suggested that abnor-
malities at the genetic level result in dysfunctions in subcel-
lular biological processes that impair synaptic homeostasis,
resulting in autistic symptoms. For instance, mutations in
synaptic proteins identified in patients with ASD may affect
the size and shape of dendritic spines (Bourgeron, 2009) and
decrease synaptic transmission. Such mutations can nega-
tively impact the development and stabilization of synapses;
in animal models of autism, they are associated with hyper-
responsiveness, increased stereotypy, and social deficits
(Schmeisser et al., 2012). Synaptic abnormalities also have
been linked to the pathogenesis of Rett syndrome, an ASD
(Moretti et al., 2006). Finally, abnormal sleep patterns in
ASD-related disorders suggest that abnormal synaptic scal-
ing and plasticity may also contribute to autism (Wang,
Grone, Colas, Appelbaum, & Mourrain, 2011). Such abnor-
malities can potentially negatively affect incremental-
learning mechanisms at a synaptic level, which might in turn
disrupt visual category learning. We simulated the effects of
synaptic deficits on visual processing by adjusting a model
parameter (learning rate) that determined how rapidly con-
nections between processing units were adjusted and, in
another variant of the model, by manipulating a second
parameter (weight decay) that specified in what ways con-
nections were adjusted during learning. A basic assumption
of this approach is that irregularities in synaptic function will
degrade neural plasticity and that decreases in neural plas-
ticity will tend to impair learning.

Simulating cortical structural abnormalities The brains of
individuals with autism have a greater than typical number
of cortical minicolumns—structures that constitute basic
functional assemblies of neurons in the brain (Casanova et
al., 2002; Casanova et al., 2006). The availability of cortical
minicolumns may influence perceptual category learning by
modulating a person’s capacity to acquire novel stimulus
representations and by constraining the possible resolution
of those representations (Mercado, 2008). The greater num-
ber of minicolumns in individuals with autism has the
potential to improve or degrade performance in perceptual
category learning, depending on how these cortical circuits
contribute to the processing of visual inputs. To explore
whether variations in the number of processing units might
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contribute to atypical category learning and generalization
by individuals with HFASD, we increased and decreased the
number of computational processing units (known as
“hidden-layer” units) in the model, and examined how these
changes impacted on the model’s learning and generaliza-
tion (see also Cohen, 1994, 1998). In this approach, hidden-
layer units are considered to be analogous to cortical mini-
columns (or sets of minicolumns), and increases in the
number of minicolumns are simulated by increasing the
number of hidden-layer units.

Simulating noisy stimulus processing The relative increase
in cortical excitation observed in individuals with autism
may lead to a decrease of signal relative to noise in neural
processes (Rubenstein & Merzenich, 2003; Yizhar et al.,
2011). Increased neural noise may effectively reduce the
efficacy of visual cortical circuits that are engaged during
category learning and may also degrade mechanisms for
adjusting the selectivity of cortical processing. In past stud-
ies, modelers have simulated a decrease in the neural signal-
to-noise ratio by modulating the computations performed
within a connectionist model (Fellous & Linster, 1998; Li,
von Oertzen, & Lindenberger, 2006). To simulate the
postulated signal-to-noise decrease in autism, we similarly
adjusted a processing property of individual computational
units, known as the “gain” parameter. Decreases in neural
signal to noise are thus simulated as decreases in the
network’s capacity to resolve inputs.

In the present article, we focus on simulating the behav-
ioral data reported by Church et al. (2010), and secondarily
on experiments conducted by Vladusich et al. (2010). We
consider the findings of these studies to be representative of
the kinds of deficits reported in past studies of category
learning by individuals with ASD.

Simulation 1

Simulating visual category learning by typically developing
children

As the starting point of our simulations, we chose an artifi-
cial neural network (ANN) originally developed by
Henderson and McClelland (2011) to model visual object
perception by individuals with simultagnosia. As in tradi-
tional theories of visual perception (Goodale & Milner,
1992), this model includes a pathway associated with object
identification (corresponding to the ventral cortical path-
way) and another devoted to processing location-relevant
information (the dorsal cortical pathway). Additionally, an
emergent property of their ANN is that the dorsal pathway
facilitates object recognition (as was previously suggested
by Konen & Kastner, 2008). In this model, the two

pathways cooperate to facilitate recognition of multiple
objects across a spatial plane. We selected this model be-
cause Henderson and McClelland reported that reducing the
number of processing units in the model led to better spatial
generalization, but also to less accurate identification and
categorization of multiple objects; Cohen (1994, 1998)
noted a similar phenomenon in his computational models
of autism.

Description of the model

Architecture and implementation Henderson and McClelland
(2011) tested three architectures: a recurrent backpropaga-
tion neural network with a dorsal and a ventral pathway
connected by a hidden layer; a recurrent ventral-pathway-
only network; and a feed-forward dorsal-only network. The
architecture of the full ventral–dorsal ANN is illustrated in
Fig. 1. The neural network simulations reported in this
study were conducted with the PDPTool program
(www.stanford.edu/group/pdplab/resources.html#pdptool)
running in MATLAB R2010a. Ancillary data processing
and formatting were handled with custom scripts written in
the Perl 5.12.2, Ruby 1.9.2, and Python 2.7 programming
languages.

Pilot studies revealed that for the visual category-learning
task used by Church et al. (2010), the dorsal pathway
learnedmuchmore quickly than the ventral pathway, and there
was little interaction between the pathways. Consequently, we
chose to focus on the dorsal-only architecture for all simu-
lations but Simulation 4. The performance of TD children
was simulated using an ANN with 144 input nodes, 144
hidden-layer nodes, and 144 output-layer nodes, as in the
original Henderson and McClelland (2011) dorsal-only sim-
ulations; their original parameter settings were also preserved,
with the exception of learning rate (i.e., no attempt was made

Dorsal output
N = 144

Dorsal hidden
layer

Middle hidden layer

Ventral output
N = 64 objects
+ 8 categories

Ventral hidden
layer 1

Ventral hidden
layer 2

Visual input
N = 144

Fig. 1 Henderson and McClelland’s (2011) dorsal–ventral object
perception model. This architecture was the starting point for the
simulations conducted in the present study. From Fig. 1 of “A PDP
Model of the Simultaneous Perception of Multiple Objects,” by C. M.
Henderson and J. L. McClelland, 2011, Connection Science, 23, p. 163.
Copyright 2011 by Taylor & Francis. Adapted with permission
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to identify a particular configuration of learning rate, number
of training epochs, or initial weights that would optimize
the match between ANN performance and behavioral
performance).

Summary of the Church et al. (2010) study Church et al.
(2010) compared the perceptual category-learning and gen-
eralization abilities of children with HFASD (primarily
Asperger’s disorder) to those of typically developing chil-
dren who were matched with respect to age (range 7–12), IQ
(M = 110; SD = 10), and demographic characteristics. In the
training phase of the categorization task (consisting of 30
trials), the children were introduced to shapes that they were
told would or would not belong to the category “cave
ghosts,” and that they would be expected to classify during
the testing phase. These two-dimensional shapes were con-
structed from patterns of dots comparable to those described
by Posner and colleagues (Posner, Goldsmith, & Welton,
1967; Posner & Keele, 1968). The visual images used in the
study were members of one of two classes: (1) shapes that
were systematically distorted versions of an original “ca-
nonical” prototype shape (we refer to this class of shapes as
prototype distortions, or simply distortions), corresponding
to the “cave ghost” class of stimuli; or (2) random shapes
that had no relationship to the prototype, and therefore did
not belong to the class “cave ghost.” The canonical proto-
type was created by randomly generating a set of dots within
a fixed area, connecting those dots to create polygons, and
then filling the polygons with a random color. Distorted
versions of the prototype were created by varying the prob-
ability that each dot would move from its original position.
The prototype distortions varied by level of distortion (L),
with higher levels indicating less resemblance to the canon-
ical prototype.1 To generate the random class of stimuli, dots
randomly placed within a fixed area were connected and
then filled with a random color. The random shapes bore no
meaningful resemblance to each other, nor did they resem-
ble the distortions. Figure 2 presents examples of the stimuli
used in the Church et al. study.

Individual shapes were presented on the computer screen
in random order, and participants pressed a button to indi-
cate whether the image was or was not a “cave ghost.” This
task has been described in the category-learning literature as
an (A, not A) task (Ashby & Maddox, 2005). Each shape
appeared only once during training. During the training
phase, feedback was presented onscreen to indicate
whether the response was correct. The participants were

subsequently tested with additional category members using
the same procedure as during training, with the exception
that participants did not receive feedback during the testing
phase. Figure 3 shows the proportions of novel shapes that
children in both groups classified as being cave ghosts.

Network inputs and outputs The visual stimuli created by
Church et al. (2010) provided the basis for the input set. The
training images included 15 prototype distortions (five L3,
L5, and L7 distortions), as well as 15 random shapes. The
test images consisted of the canonical prototype (L0) and 25
distortions (five each of the L2, L3, L4, L5, and L7 shapes),
as well as 30 random shapes. The original images from
Church et al.’s training and test sets were converted into
matrices representing features within the images (see the
supplemental materials for details).

The target outputs in our simulations included only two
possible outputs corresponding to right and left button-
presses. In contrast, Henderson and McClelland’s (2011)
model was originally designed to associate objects at differ-
ent locations with various actions performed in ways that
depended on the location of the object, and thus involved

1 Due to the probabilistic method by which stimuli were generated,
the similarity between the canonical prototype and a particular
stimulus may not be representative of the group’s average similarity
to the canonical prototype. For a full description of the method
used to generate the stimuli, refer to the electronic supplement of
Church et al. (2010).

Fig. 2 Examples of visual stimuli used by Church et al. (2010).
Children were trained to classify shapes from Levels 3, 5, and 7 as
“cave ghosts,” and to classify random shapes as not being cave ghosts.
Lower levels correspond to less distorted versions of the prototype, and
therefore are more similar to each other and to the prototype
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more variable and complex target outputs than those used in
the present simulations. Our two outputs were encoded
using a 144-element array to match the output layer size of
the original model.

Results and discussion

We initially verified that Henderson and McClelland’s
(2011) dorsal-only ANN could learn to classify inputs as
either prototype distortions or random shapes. The results
reported below reflect the averages of 20 distinct simula-
tions with randomly initialized networks; the number of
ANNs tested per condition corresponded to the number of
typically developing children in the Church et al. (2010)
study.

Given an appropriate learning rate and a sufficient num-
ber of training epochs, the networks achieved almost perfect
categorization accuracy. Because of the relatively small
amount of training in Church et al.’s (2010) original behav-
ioral experiment (30 trials total), few children attained such
high performance levels. We found that training the ANNs
for 15 epochs at a learning rate of .0001 produced a close
approximation to the TD group’s generalization pattern
(Fig. 4a).2 This ANN configuration (hereafter referred to
as the TD model) provided the basis for subsequent manip-
ulations aimed at simulating perceptual generalization by
children with HFASD. There was relatively little variation
in the generalization performance of the TD models. As
noted earlier, other existing computational models developed

specifically to model perceptual category learningwould likely
be capable of generating similar generalization patterns.

The abstract encodings of images used to train ANNs in
this study did not match the inputs that Henderson and
McClelland’s (2011) model of visual processing was origi-
nally designed to classify, and undoubtedly differed in many
respects from how the children’s brains encoded those same
images. Consequently, the fact that the ANNs classified
novel shapes in ways similar to the TD children suggests
that this model captures general properties of visual category
learning and generalization, and that the observed generaliza-
tion patterns are not simply an idiosyncratic feature of the
inputs or parameters selected for these simulations. These
findings establish that a generic computational model of visual
object processing could learn and generalize visual shape
classifications in ways that led to endorsement rates compa-
rable to those produced by typically developing children.

Simulation 2

Simulating visual category learning by children
with HFASD

Church et al. (2010) found that children with HFASD were
less likely than typically developing children to endorse
prototype class stimuli (especially the prototype stimulus)
and more prone to endorse random stimuli as members of
the category. Given that the canonical prototype is the shape
most representative of the characteristics of the prototype-
based family of images in this task, TD participants usually
classify it as being a member of the learned category (Posner
& Keele, 1968; see also Fig. 3 above). The fact that children
with HFASD were less likely to endorse the prototype than
some distortions suggests that they did not simply perform
more poorly than TD children, but showed a qualitatively
different pattern of learning and generalization.

We used four different manipulations in an attempt to
simulate this atypical generalization pattern, including de-
creasing the rate of learning, disrupting changes in connec-
tions during learning, modifying the number of processing
units within the ANNs, and decreasing the effective signal-to-
noise ratio in the processing units. Below we describe how
each of these manipulations was computationally instantiated,
as well as the efficacy of each approach. We also conducted
additional simulations to generate specific behavioral predic-
tions that could further differentiate the potential impacts of
these different manipulations in novel training conditions.

Description of the model

Architecture and implementation The ANNs used in these
simulations, as well as the inputs and outputs, were identical

2 These parameter settings were chosen somewhat arbitrarily; similar
generalization patterns would likely be produced by ANNs with other
settings.

Fig. 3 Church et al.’s (2010) behavioral results. The endorsement rates
for the typically developing (TD) children and children with high-
functioning autism spectrum disorder (HFASD) are shown for each
level of prototype distortion (L0 is the prototype, and L2–L7 denote
increasing levels of distortion), as well as for the random shapes.
Overall, children with HFASD were more likely to endorse novel
low-level distortions of a prototype than the actual prototype, and were
generally less likely to endorse novel prototype distortions
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to those in Simulation 1. We simulated deficits in neural
plasticity and neural homeostasis associated with HFASD
by adjusting the learning rates and weight decay settings of
the ANNs. Just as structural and functional synaptic abnor-
malities can impede the learning process, changes to a
neural network’s learning rate or weight decay values can
hinder the network’s learning and generalization. We simu-
lated the cortical structural abnormalities associated with
HFASD by increasing and decreasing the number of hidden
units in the ANNs, and also simulated increased neural noise
by adjusting the gain of the activation functions within these
hidden units. No attempt was made to search parameter
space for optimally fitting parameters. We initially tested a
broad range of parameter settings, after which we tested a
smaller range surrounding the parameter values that led to
generalization most similar to that of children with HFASD.

Simulating degraded plasticity The learning rate (LR) pa-
rameter of an ANN scales the magnitude of the possible
changes made to network weights during training. If a net-
work’s learning rate is too low, the ANN might take an
excessive amount of time to reach an adequate level of
performance. A large number of training epochs combined

with a low learning rate might also cause the network to
overfit the data, leading to poor generalization (Dawson,
2005). We attempted to simulate atypical generalization by
children with HFASD by lowering the TD model’s learning
rate. This manipulation may be considered analogous to
reducing synaptic plasticity in biological neural systems.
The overall effect of this manipulation was to decrease the
rate at which task-relevant learning occurred.

Simulating degraded homeostasis The weight decay param-
eter of an ANN can facilitate generalization through the
adjustment of the network’s error function, decreasing the
variability of the weight changes during learning (Bishop,
1995); this technique, and other methods that potentially
discourage overfitting, are known as “regularization”methods.
We used an “anti-regularization” method (Hamamoto,
Mitani, Hase, & Tomita, 1997; Raudys, 1998, 2001) imple-
mented by adding a term scaled by the weight decay value
to the network’s learning algorithm (potentially encouraging
overfitting), to attempt to replicate the HFASD generalization
data. The effect of this manipulation was to distort the
magnitude of changes in the network’s weights during each
cycle of the training process. This manipulation of the

Fig. 4 (a) Comparison of
the typically developing
(TD) model and TD group
endorsement rates for the test
stimuli. The endorsement rates
show that the model is able to
accurately simulate the Church
et al. (2010) TD perceptual
generalization results for all
stimulus distortion levels.
(b) Decreasing the learning
rate produced a reasonable
approximation of generalization
by children with HFASD, with
the exception that the neural
networks were more likely to
endorse L0, the canonical
prototype. (c) The negative-
weight-decay manipulation
also produced a reasonable
approximation, aside from the
prototype endorsement rate.
(d) Increasing hidden-layer size
did not replicate atypical
generalization by individuals
with HFASD, and instead
improved the network’s
endorsement accuracy. (e)
Changes in gain values also
did not replicate the observed
atypical generalization
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ANNs can be viewed as analogous to altering the ability of
neural circuits to establish homeostasis during learning.

Simulating structural abnormalities Under certain condi-
tions, increasing the number of units in an ANN’s hidden
layer can decrease its ability to correctly categorize unfa-
miliar stimuli (Cohen, 1994; Murata, Yoshizawa, & Amari,
1994). In other words, an excessively large hidden layer can
compromise a network’s ability to generalize and can lead to
overfitting of the training set, which could potentially pro-
duce effects comparable to the impaired generalization ob-
served in individuals with autism (Cohen, 1994). In other
cases, however, a large hidden layer can improve recognition
and generalization (Caruana, Lawrence, & Giles, 2001;
Cohen, 1998). Drawing a possible parallel between the effects
of an excessive number of hidden-layer units in ANNs and
increased minicolumn density in people with ASD, we exam-
ined whether an increase or decrease in the number of hidden-
layer units would produce atypical generalization.

Simulating increased neural noise A decrease in signal-to-
noise ratio can be modeled in a neural network by reducing
the slope of the model’s activation function, referred to as
lowering the gain (Fellous & Linster, 1998). Gain modula-
tion has neurological correlates in catecholamine-modulated
signal-to-noise ratio changes (Servan-Schreiber, Printz, &
Cohen, 1990) and could also correspond to changes in
cortical excitability resulting from disruptions in GABAergic
(Rubenstein & Merzenich, 2003) or GABAergic and gluta-
minergic (Vattikuti & Chow, 2010) systems, as has been
proposed to occur in individuals with autism. We attempted
to simulate atypical generalization associated with a decreased
signal-to-noise ratio by lowering the TD model’s gain.
Because the PDPTool software does not provide direct access
to the properties of hidden-unit transfer functions, gain reduc-
tions were instead implemented in accordance with the meth-
od specified by Li, von Oertzen, and Lindenberger (2006):
Initial weights were scaled by the gain value, and a new
learning rate was used that was equal to the original learning
rate multiplied by the square of the gain value. Noisy stimulus
representations could result from an insufficiency or over-
abundance of neurotransmitters or neuromodulators in
neural circuits, among other factors, and might, in princi-
ple, account for degraded recognition of the prototype.

Predicting generalization in novel situations Training with
different input sets may lead to different patterns of gener-
alization across various methods of simulating HFASD per-
formance. Simulations of different training regimens thus
provide a way to examine how well different manipulations
predict category-learning and generalization differences
across groups. To explore this possibility further, we trained
ANNs with a novel input set, consisting of the L0 prototype

as the sole exemplar of a cave ghost, as well as all of the
random stimuli included in the original training set.

Results and discussion

Table 1 summarizes how parameters were manipulated in
these simulations, the neural abnormalities that these manip-
ulations were designed to simulate, and the capacity of these
manipulations to account for atypical generalization in
children with HFASD.

Modeling atypical generalization A reasonable match to the
HFASD generalization pattern was found when LR was
decreased to .00001—an order of magnitude lower than
the learning rate used in the TD model (Fig. 4b).
Decreasing LR reduced the likelihood of endorsement at
all prototype distortion levels (i.e., there was a global drop
in performance). Consistent with our simulation results,
multiple reports have indicated that individuals with autism
often take longer than TD participants to learn to categorize
visual items (Bott et al., 2006; Schipul, 2012; Soulières et
al., 2011; Vladusich et al., 2010). Also, ASD is associated
with atypical synaptogenesis and synaptic function
(Auerbach et al., 2011), which could disrupt synaptic plas-
ticity and, in turn, degrade learning mechanisms (Wang et
al., 2011). Although decreasing LR led to worse generaliza-
tion relative to the TDmodel, this manipulation did not lead to
lower endorsement of the prototype (L0) relative to distor-
tions, in contrast to what was observed behaviorally. This
discrepancy suggests that although the reduced-LR model
captures some important aspects of perceptual category learn-
ing by individuals with autism, it does not tell the whole story.

A similar shift in generalization was also found when
negative weight decay was added to the TD model (Fig. 4c).
Although this manipulation provided a reasonable fit to the
HFASD results, models with negative weight decay again
endorsed the prototype more often than did children with
HFASD. An interesting feature of networks with negative
weight decay was that they showed significant sensitivity to
the network’s initial weights, such that networks with the same
parameter values could produce dramatically different gener-
alization patterns. The high level of individual variability in
these simulations thus captures the significant response vari-
ability observed when people with ASD perform perceptual
and cognitive tasks (Mottron et al., 2006). Learning abnormal-
ities characteristic of the autistic phenotype have been associ-
ated with a diminished ability to establish neural homeostasis
(Bourgeron, 2009; Ramocki & Zoghbi, 2008), which may
lead to analogous disruptions of synaptic plasticity.

Increasing the number of hidden units did not result in
generalization patterns comparable to those observed in the
HFASD group (Fig. 4d). On the contrary, this manipulation
maintained or slightly improved the ANNs’ ability to correctly
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endorse prototypes and diminished the number of random
stimuli that were endorsed. Decreasing the number of hidden
units below a certain threshold degraded generalization, but
not in ways that were comparable to children with HFASD.
These findings are in contrast with earlier simulations in
which increasing the size of the hidden layer within the model
did degrade generalization (Cohen, 1994, 1998).

We also did not find a network gain setting that could
approximate the HFASD group’s generalization pattern.
Figure 4e shows the model’s performance when gain was
40 % of the TD model’s original gain, producing one of the
closest approximations to the atypical generalization observed
in children with HFASD. Thus, we did not find evidence to
support the idea that an atypical signal-to-noise ratio is re-
sponsible for atypical generalization. It is important to note,
however, that the gain manipulation only degraded the signal-
to-noise ratio during acquisition, and therefore did not account
for possible effects of degraded processing during testing.

Quantitative comparisons of mean differences in gener-
alization patterns from those observed behaviorally for each
of the four ANN manipulations confirmed that decreasing
LR provided the best fit (M = .05, SD = .04), followed by
adding negative weight decay (M = .09, SD = .09), decreas-
ing gain (M = .18, SD = .07), and increasing the number of
hidden units (M = .19, SD = .09). In all simulations, the
largest difference from the observed generalization perfor-
mance was that the ANNs were more likely to endorse the
prototype (M = .22, SD = .09).

Predicting generalization Figure 5a shows how the TD
model generalized after training with the new input set
(contrasted with the results of Simulation 1). These simu-
lations predict that after training with prototypes and ran-
dom stimuli, TD children would be adept at endorsing
stimuli at low distortion levels, but less likely to endorse
highly distorted stimuli than they were in the original study.

Of the manipulations described above, decreasing learn-
ing rate or adding negative weight decay to ANNs produced
the closest approximations to the HFASD generalization
pattern. We anticipated that these two manipulations would
produce distinctly different patterns of generalization when
the ANNs were trained to distinguish prototypes from ran-
dom stimuli. When trained with the new input set, HFASD
simulations using a reduced LR showed a smaller decline in
endorsement rates with higher levels of distortion than were
predicted by the TD model (Fig. 5b), and they made the
strong prediction that children with HFASD should be more
likely than TD children to endorse highly distorted proto-
types as members of the learned category.

After training with the new input set, ANNs with nega-
tive weight decay showed substantially lower endorsements
of L2 and L3 shapes than either the reduced-LR or TD
neural networks (Fig. 5c), and were also less likely to
endorse other distortions. This manipulation thus predicts
that if category learning by children with HFASD is nega-
tively impacted by dysfunctional synaptic homeostasis, then
children with HFASD should show worse generalization
after training with the novel input set. This prediction is
compatible with previous suggestions that autism is associ-
ated with hyperspecific learning (Grossberg & Seidman,
2006; Markram & Markram, 2010; McClelland, 2000),
because hyperspecific learning should lead to steep gener-
alization gradients.

Simulation 3

Simulating visual category learning by subgroups
of children with HFASD

None of the parameter manipulations tested above proved to
be able to fully account for the atypical pattern of

Table 1 Summary of neural-network parameter values for the simulation results shown in Fig. 4 and Fig. 8, along with the atypical neural process
that each manipulation is intended to emulate

Model Variant Neural Abnormality
Simulated

Ability to
Account for Atypical
Generalization

Parameter

Number of
Training Epochs

Learning
Rate

Momentum Weight Decay Hidden-
Layer Size

TD N/A N/A 15 .0001 .9 0 144

ASD-LR Reduced neural plasticity High 15 .00001 .9 0 144

ASD-WD Reduced neural homeostasis High 15 .0001 .9 –.0007 144

ASD-gain Increased neural noise Low 15 .000016 .9 0 144

ASD-hidden layer Increased number of
minicolumns

Low 15 .0001 .9 0 216

ASD-LR A Type II Reduced neural plasticity High 15 .000005 .9 0 144

TD, typical development model; ASD, autism spectrum disorder; LR, reduced-learning-rate model; WD, weight decay model; gain, lowered-gain
model; hidden layer, expanded-hidden-layer model; LR A Type II, reduced-learning-rate model for A Type II subgroup.
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generalization observed by Church et al. (2010). This dis-
crepancy could mean that the model or model parameters
failed to capture some key process underlying differences in
visual category learning and generalization across groups.
Alternatively, children with HFASD may show a heteroge-
neous pattern of learning and generalization, such that the
pattern evident at the group level is not representative of the

patterns shown by individual children. To explore this pos-
sibility, the generalization patterns produced by individual
children in the Church et al. study were automatically sorted
using a self-organizing map (SOM), and then simulations
comparable to those above were run in an attempt to repli-
cate the generalization patterns shown by the subgroups of
children identified by the SOM.

Description of the model

Architecture and implementation The ANNs used in these
simulations, as well as their inputs and outputs, were again
identical to those used in Simulation 1. Generalization pro-
files for individual children were generated from test per-
formance (seven measures for each child; n = 40), and then
used to train an SOM created with the data-mining program
Orange (Demsar, Zupan, Leban, & Curk, 2004). SOMs are a
type of neural network in which the spatial arrangement of
units within the network becomes organized through train-
ing, such that adjacent nodes respond to similar inputs
(Kohonen, 2001). The prevalence of repeated input features
determines the response properties of each node after train-
ing. Nodes acquire their selectivity to features by competing
to match each input during training; the sensitivities of the
winner node and its neighbors are gradually adjusted to
increase their responsiveness to “matching” inputs. The
resulting map thus provides a way to identify the prevalence
of different input properties (in this case, different patterns
of generalization), as well as how those properties vary
across individuals (Mercado, 2011).

Results and discussion

Figure 6 shows the output of a 4 × 5 SOM that was trained
with the 40 generalization profiles from children in the

Fig. 5 (a) The model predicts that TD participants trained only with
prototypes would demonstrate low accuracy in endorsing highly
distorted prototypes. (b) Reduced-learning-rate simulations predict that
children with HFASD trained only with the prototype would show a
moderate decline in endorsement accuracy at higher levels of distortion.
(c) Simulations based on manipulating negative weight decay predict that
children with HFASD trained only with the prototype would show a
considerable decline in endorsement rates at all stimulus levels above
L0, with the highest distortion levels showing the largest declines

Fig. 6 Output of a 4 × 5 self-organizing map (SOM) trained with
generalization profiles from Church et al. (2010). Circle size
indicates how many children best matched that unit in the trained
map (range = 1–5). Typically developing children are shown in
black, and HFASD children in white
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Church et al. (2010) study. Each square corresponds to a
processing unit in the SOM, and the size of the circle within
each square indicates the number of children whose profile
best matches a particular unit (the smallest circles corre-
spond to one child, and the largest to five children). To
reveal the structure of the map, circles were color-coded
according to whether the children were typically developing
(black) or had HFASD (white). The pie charts show the
proportions of children from each of these two groups
associated with each map unit.

Analyses of spatially contiguous clusters of nodes within
the SOM were used to calculate prototypical generalization
profiles for subgroups of similar individuals. These analyses
revealed two subsets of children with HFASD, one associ-
ated with the upper left corner of the map, and the other
associated with the right edge of the map. One subgroup of
children with HFASD (hereafter referred to as A Type I; n =
11) showed a generalization pattern that was essentially
indistinguishable from that of TD children, whereas the
other subgroup (referred to as A Type II; n = 9) showed little
generalization. Examination of the generalization patterns
revealed that children within each subgroup could be iden-
tified on the basis of the rates at which they endorsed
random stimuli as cave ghosts during testing. Children
who endorsed more than 30 % of the random stimuli as
cave ghosts showed an A Type II profile, whereas children
who endorsed fewer random shapes showed an A Type I
profile (Fig. 7a).

Initial attempts to produce a pattern of generalization
comparable to A Type II children by either decreasing the
learning rate or increasing negative weight decay proved
unsuccessful. In all cases, ANNs endorsed the prototype
more than other stimuli (as in Simulation 2). A subset
of ANNs did produce generalization patterns similar to
the A Type II endorsement pattern. In particular, by
averaging across the generalization patterns of nine
reduced-learning-rate (LR = .000005) ANNs that best
matched the performance of individual children with A
Type II profiles (selected from 100 simulations), we were
able to construct a generalization profile that closely
matched their endorsement pattern (Fig. 7b). Thus,
reduced-LR ANNs are capable of generalizing like chil-
dren with A Type II profiles but are too variable in
performance to make precise predictions about how small
groups of children with A Type II profiles will general-
ize. In part, this is because with few training trials and a
low learning rate, the initial weight settings (which are
randomized) will have a larger impact on how an ANN
generalizes.

Overall, these findings provide an explanation for why
the ANNs in Simulation 2 were unable to recreate the
overall patterns of prototype endorsement by children with
HFASD. The group-level models in Simulation 2 assumed

that generalization in children with HFASD could be char-
acterized in terms of systematic deviations in learning or
stimulus-processing mechanisms. Instead, the analyses
above suggest that a subset of individuals with HFASD were
successful at the visual category-learning task, whereas
others were not. No uniform adjustment to the model param-
eters would be able to capture such dichotomous outcomes.
Instead, the model must take into account individual differ-
ences in learning to fully characterize the empirically ob-
served patterns (see also Lee & Webb, 2005; Nosofsky,
Palmeri, & McKinley, 1994; Smith, Murray, & Minda,
1997). It is the linear combination of these two dichotomous
generalization profiles (associated with the two subgroups
of children with HFASD shown in Fig. 7a) that leads to the
lowering of prototype endorsement by children with
HFASD. Aggregation of heterogeneous subgroups of
individuals with HFASD may also lead to seemingly
contradictory findings in studies of adults, as is illustrated
by Simulation 4.

Fig. 7 (a) Generalization profiles for two subgroups of children with
HFASD, identified by the SOM shown in Fig. 6. Children who en-
dorsed fewer than 30 % of the random stimuli as cave ghosts (n = 11)
showed generalization comparable to the TD children (A Type I),
whereas children who endorsed more random shapes (n = 9) showed
little generalization (A Type II). (b) Simulations in which individual
reduced-learning-rate ANNs were matched to individual generalization
profiles produced an overall generalization pattern comparable to that
of the A Type II profile
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Simulation 4

Simulating the Vladusich et al. (2010) experiments

Only one study other than Church et al. (2010) has directly
measured the endorsement of novel dot patterns after
feedback-based training in individuals with HFASD. In
two experiments, Vladusich et al. (2010) trained typical
adults and adults with HFASD on an (A, B) visual
category-learning task in which they had to classify dot
patterns with medium levels of distortion into two catego-
ries. The researchers then tested participants with sets of
novel and familiar dot patterns of various distortion levels.
In both experiments, Vladusich et al. reported that individ-
uals with HFASD showed a typical pattern of generaliza-
tion, indicating intact prototype recognition. However,
participants were trained to a fixed criterion before being
tested, and in at least one of the two experiments, individ-
uals with HFASD proved to be much slower at learning the
task. The following simulations assessed whether the simple
model of visual object perception described above could
account for the apparent discrepancies between Church et
al.’s finding that visual category learning is disrupted in
children with HFASD and Vladusich et al.’s finding that
category learning in adults with HFASD is intact.

Description of the model

Architecture and implementation Initial attempts to simulate
the (A, B) visual category-learning task with a dorsal-only
model proved to be unsuccessful. In all cases, the trained
ANNs were more likely to endorse dot patterns with medi-
um levels of distortion than either prototypes or dot patterns
with low-level distortion. This outcome is consistent with
past suggestions that (A, B) category learning engages
learning mechanisms beyond those required for an (A, not
A) category-learning task (Ashby & Maddox, 2005). We
thus switched to testing with the ventral-only model
(described in Simulation 1), which was specifically designed
by Henderson and McClelland (2011) to flexibly categorize
objects. This model differs from the dorsal-only model in
that it has two hidden layers and recurrent connections
within the second hidden layer (see Fig. 1). The additional
hidden layer and internal feedback within the ventral-only
model increases its capacity to represent idiosyncratic infor-
mation that identifies particular categories. The architectural
specifications and parameters used in this model were iden-
tical to those used by Henderson and McClelland, with the
exceptions that the learning rates and target outputs were
modified to match those of Simulations 1 and 2. ANNs with
a learning rate of .0001 were used to simulate performance
by typical adults (as in Simulation 1), as well as adults with
HFASD who learned at rates comparable to those of typical

adults. On the basis of the results of Simulation 3, which
showed that the performance of children with an A Type I
profile could be simulated using the same learning rate that
was used to simulate performance by typical children, we
classified adults with a typical learning rate as having an A
Type I profile. Adults with HFASD that showed slower than
typical learning rates were classified as having an A Type II
profile, based on the results of Simulation 3 that showed that
the performance of children with an A Type II profile could
be reproduced by lowering learning rate. These slower-
learning adults were simulated using ANNs with a reduced
learning rate (.00001). The ANNs used to simulate perfor-
mance by typical adults (TA) were trained to a criterion of
80 % or more correct classifications, following the experi-
mental design of Vladusich et al. (2010). The ANNs used to
simulate performance by HFASD adults with an A Type II
profile were trained until they had completed three times as
many epochs as the average amount required by TA models
to achieve criterion (again matching the effective protocol of
Vladusich et al., 2010). The TA simulations required an
average of 39 epochs to train to criterion. All of the A
Type II networks were trained for 117 epochs. Ten ANNs
were trained for each condition, and performance was aver-
aged across the ten simulations. Overall performance of the
simulated HFASD group was calculated using a weighted
average of the performance of ANNs with A Type I profiles
and those with AType II profiles, as described below.

Inputs and outputs The specific stimuli used by Vladusich et
al. (2010) are not publicly available, and even if they were, the
image-coding scheme used in Simulations 1–3 was not appro-
priate for describing dot patterns in which the dots are not
connected. Consequently, we developed a new set of 144-
element input vectors based on the small set of sample stimuli
reported by Vladusich et al. Matrices corresponding to the two
reported prototypical dot patterns were created, and then dis-
torted versions of these patterns were generated that had low,
medium, and high levels of distortion. All ANNs were trained
with a single set of stimuli made up of 32 medium-level
distortions. After training, the networks were tested on their
responses to the 32 training stimuli (in Fig. 8, MF = medium,
familiar); 32 medium-level-distortion items that were novel
(MN = medium, novel); 32 low-level-distortion items that
were novel (LN = low, novel); and 32 high-level-distortion
items that were novel (HN = high, novel). This distribution of
testing and training stimuli paralleled the distribution of stim-
uli used by Vladusich et al.

Results and discussion

Simulations of category learning by typical adults using the
ventral-only model produced a generalization pattern com-
parable to that reported by Vladusich et al. (2010) for all
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stimuli other than the high-level-distortion stimuli (Fig. 8a).
The AType II simulations produced a generalization pattern

much worse than was reported for their adults with HFASD
(Fig. 8a). However, as was illustrated by Simulation 3, not
all individuals with HFASD show an A Type II generaliza-
tion pattern. Vladusich et al. reported individual learning
curves and explicitly noted in discussing the results of
Experiment 1 that several individuals with HFASD took
much longer than was typical to reach criterion during
training. Figure 2 from their article shows that five individ-
uals with HFASD were trained for more blocks than any
typical adult. If these five individuals are assumed to show
A Type II profiles and the remaining 14 participants are
assumed to show A Type I profiles (i.e., generalization
comparable to a typical adult), then the overall pattern of
generalization by adults with HFASD can be compared to a
similarly weighted average of ANN performance. This
averaged generalization pattern shows an overall drop in
performance across all stimuli, consistent with the findings
of Vladusich et al. (Fig. 8a).

Vladusich et al. (2010) performed a second experiment
that was identical to their first, except that they used differ-
ent methods to generate prototype distortions. In their sec-
ond experiment, they found no statistically significant
differences in generalization performance between the
groups (Fig. 8b). Vladusich et al. attributed the better per-
formance of individuals with HFASD in this second exper-
iment to the differences in stimulus construction. The
present simulations cannot replicate the differences in the
images used across these two experiments. However, the
learning profiles reported by Vladusich et al. in Fig. 4 of
their report show that in their second experiment, only two
of 13 individuals with HFASD required more blocks of
training than any typical adult. If it is assumed that these
two participants would fall within the A Type II subgroup,
and that the remaining 11 adults with HFASD showed A
Type I profiles, then a weighted average of the generaliza-
tion patterns for this distribution of individuals reveals gen-
eralization comparable to that reported by Vladusich et al.
(Fig. 8b). Thus, the ventral-only model can account for the
lack of statistically significant differences that they observed
in Experiment 2 without needing to assume that individuals
with HFASD were better able to process the novel stimulus
sets. Specifically, the present model predicts that when a
sample of adults (or children) with HFASD is skewed to-
ward individuals with A Type I profiles, the atypical gener-
alization patterns of individuals with A Type II profiles are
unlikely to be statistically detectable in between-group com-
parisons because of the large within-group variance, and
because A Type I profiles are essentially indistinguishable
from typical generalization patterns.

It is important to note that the same changes in learning
rate that adequately re-created generalization differences
observed in children with HFASD by Church et al. (2010)
when used with dorsal-only ANNs also proved to be able to

Fig. 8 (a) Vladusich et al.’s (2010) Experiment 1 showed similar
generalization profiles for both typical adults (TA) and adults with
HFASD after the participants were trained to identify two different
categories. The trained stimuli were medium-level distortions of two
different dot patterns (MF), and the novel stimuli were dot patterns
with low (LN), medium (MN), or high (HN) levels of distortion.
Simulations with Henderson and McClelland’s (2011) ventral-only
model generalized similarly to TA groups for all of the stimulus classes
except high distortions. Reduced-learning-rate simulations of general-
ization by adults with HFASD in which the participants were divided
into those with AType I or AType II profiles showed an overall drop in
generalization performance comparable to that reported by Vladusich
et al. (b) Vladusich et al.’s Experiment 2 showed nearly identical
generalization profiles for both typical adults and adults with HFASD.
The stimuli here were distorted dot patterns generated using a different
procedure from that of Experiment 1. Reduced-learning-rate simula-
tions of generalization by adults with HFASD in which the participants
were divided into those with A Type I and A Type II profiles showed
the same small drop in generalization performance observed
experimentally

Cogn Affect Behav Neurosci (2013) 13:371–389 383



account for the differences reported by Vladusich et al.
(2010) in adults with HFASD when applied to ventral-only
ANNs. This correspondence across network architectures is
consistent with the proposal that basic learning mechanisms
are disrupted in individuals with HFASD because such
deficits should affect processing throughout cortical net-
works. In other words, learning an (A, B) visual categoriza-
tion task may engage neural systems that are not required
when learning an (A, not A) categorization task, but if
neural plasticity is globally disrupted, then both systems
are likely to show the impacts of such a deficit, even if the
specific effects of reduced plasticity on learning and gener-
alization differ across these systems.

General discussion

In this study, we used neural network models to explore how
cortical deficits may contribute to variations in category
learning and generalization by individuals with HFASD.
We discovered that subcomponents of Henderson and
McClelland’s (2011) model of visual object perception were
sufficient to simulate generalization after training on a visual
category-learning task. These simulations were guided by a
recently proposed framework for understanding cortical
constraints on learning capacity (Mercado, 2008, 2011), as
well as recent hypotheses about how neural abnormalities
may contribute to the cognitive symptoms of autism
(Markram & Markram, 2010; Rubenstein & Merzenich,
2003). The simulations suggest a simple, yet intriguing
explanation for why several past studies of category learning
by individuals with autism have produced seemingly con-
tradictory results. Specifically, the analyses here (especially
Simulation 3) suggest that some individuals with HFASD
show dramatic impairments when learning to classify ab-
stract visual patterns, whereas others show no impairment.
In the following sections, we consider why there are such
large disparities in perceptual category learning and gener-
alization across individuals with HFASD, and how compu-
tational models can clarify the contributions of neural
abnormalities to such disparities.

Individual variations in category learning

Typically developing children can vary considerably in
learning capacity. Nevertheless, most of the TD children
examined by Church et al. (2010) learned to identify “cave
ghosts” at near-ceiling levels. The A Type I cluster of
children with HFASD also rapidly learned to classify
shapes, confirming several past reports that individuals with
HFASD have the capacity to learn visual categories and to
recognize prototypes as members of those categories (e.g.,
Bott et al., 2006; Soulières et al., 2011). Vladusich et al.

(2010) reported that when adults with HFASD were trained
and tested on an easy visual categorization task, all of the
individuals with HFASD generalized as did typical adults.
When these same adults were trained and tested on a more
difficult task, however, differences in learning and general-
ization emerged. Gastgeb et al. (2012) noted that some
adults with HFASD rapidly learned visual categories when
trained without feedback, whereas others did not. They
attributed these differences to variations in nonverbal IQ,
suggesting that individuals with a higher nonverbal IQ were
better able to discover alternative strategies for learning the
task. In contrast, other researchers have suggested that when
individuals with ASD show deficits in category learning,
these deficits are a side effect of other degraded capacities.
For example, Molesworth et al. (2008) proposed that indi-
viduals who failed to recognize prototypes in generalization
tasks might do so because they failed to understand the task
demands or because of a lower mental age. Explanations of
atypical generalization based on variations in mental age or
IQ are unlikely to account for the differences reported by
Church et al., because those children were all high function-
ing, and because differences in IQ across participants were
small and matched to those of TD children.

Heterogeneity in the capacities of individuals with
HFASD is not specific to category learning and is evident
across social impairments as well as physiological responses
(Hirstein, Iversen, & Ramachandran, 2001). The present
simulations (especially Simulation 4) suggest that experi-
mental studies of category learning that do not account for
possible dichotomous differences in subgroups of individu-
als with HFASD might show either no differences from
typical categorization performance or large differences from
typical performance, depending on the mixture of A Type I
and A Type II profiles present within groups of individuals
with autism. This factor may account for many of the dis-
crepancies in past reports about whether individuals with
HFASD are impaired at learning perceptual categories.
Several researchers have suggested that individuals with
HFASD can overcome deficits in category learning with
sufficient training experience, ultimately showing typical
levels of performance (Bott et al., 2006; Schipul, 2012;
Soulières et al., 2011; Vladusich et al., 2010). The present
simulations are consistent with these proposals, in that
reduced-LR ANNs can eventually learn to classify shapes
appropriately.

It remains unclear how individuals showing an AType II
profile differ from those with A Type I profiles. Atypical
learning and generalization by individuals with HFASD
might reflect differences in how novel two-dimensional
shapes are encoded (Samson, Mottron, Soulières, &
Zeffiro, 2012; Sheppard, Ropar, & Mitchell, 2009) or differ-
ences in how abstract classification problems are approached
(Soulières et al., 2011). Differences in performance may also
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reflect intrinsic differences between the two subgroups.
Regardless of the source(s) of these differences, the present
simulations show that atypical generalization by individuals
with HFASD can be accounted for by changing a single
parameter (learning rate) within a relatively simple ANN
model of visual object perception. This parameter encapsu-
lates degradations in learning that might arise from dysfunc-
tional synaptic plasticity mechanisms in individuals with
autism. The model does not explain why some individuals
perform better than others, but it does provide a simple way
of modeling the outcomes of such variation, making it
possible to predict how particular individuals will perform
after different amounts and kinds of training. Future studies
that measure the consistency of category-learning deficits
within individuals across ages and across different tasks can
help to identify the factors that determine which individuals
show an AType II profile.

Insights from neurally based computational models
of autism

Several different neural network architectures have been
developed to simulate the behavioral and perceptual deficits
associated with autism (Björne & Balkenius, 2005; Cohen,
1994, 1998; Grossberg & Seidman, 2006; Gustafsson, 1997;
Gustafsson & Paplinski, 2002; Noriega, 2008; O’Laughlin
& Thagard, 2000; Thomas, Knowland, & Karmiloff-Smith,
2011). Of these, Grossberg and Seidman’s iSTART model is
the only one that directly predicts deficits in the learning of
prototypes by individuals with autism. Their modeling ap-
proach is similar to ours, in that they attempted to account
for individual variations in performance in terms of a sys-
tematic shift in the basic neural mechanisms underlying
category learning. The iSTART model does not unambigu-
ously predict how individuals with autism should perform in
specific category-learning tasks, however. For example,
Vladusich et al. (2010) used the iSTART model to qualita-
tively account for both the impaired and unimpaired perfor-
mance in their experiments. The iSTART model assumes
that dysfunctional cortical–hippocampal interactions are
particularly relevant to understanding ASD-related deficits
in category learning and generalization. This framework is
compatible with the present simulations, if it is assumed that
other brain regions, such as the hippocampus, modulate how
and when neural circuits within the visual cortex change
during learning.

The connectionist structure of Henderson and
McClelland’s (2011) ANN model makes it compatible with
several more specific proposals about the involvement of
cortical and subcortical brain regions in category learning
(Ashby & Maddox, 2005, 2010; Nosofsky et al., 2012;
Reber et al., 1998). Its success at characterizing generaliza-
tion by individuals with autism suggests that focusing on

differences in cortical changes during learning may be par-
ticularly informative with respect to understanding how
neural abnormalities give rise to learning deficits. For ex-
ample, recent neuroimaging work has suggested that even
when adults with ASD perform similarly to typical individ-
uals, the changes in cortical activation during acquisition
can differ substantially (Schipul, 2012; Schipul, Williams,
Keller, Minshew, & Just, 2012). When learning to catego-
rize dot patterns, adults with ASD showed less change in
activation over time (Schipul, 2012). Specifically, when
adults with ASD learned categories, activation in occipital
and parietal regions remained stable or increased during
acquisition, whereas in typical adults activation of these
regions decreased; greater disruption of learning-induced
changes in cortical activation was observed in individuals
with more severe ASD symptoms. These findings strongly
support the idea that abnormalities in basic neural plasticity
mechanisms impact how individuals with ASD learn about
perceptual categories.

The fact that a subgroup of children and adults with
HFASD appears to easily learn visual categories raises ques-
tions about how atypical perceptual category learning could
reflect a general neural deficit that is present in all individ-
uals with HFASD. An alternative possibility is that hetero-
geneous neural abnormalities occur across individuals with
HFASD that differentially affect learning across tasks.
Individuals with ASD show idiosyncratic patterns of
hyper- and hyporesponsiveness to inputs across modalities
(Hirstein et al., 2001), consistent with this possibility. Such
neural heterogeneity, if present, would be an important
consideration for future structural and functional neuroi-
maging studies of individuals with HFASD, because if im-
aging data from heterogeneous subgroups are being pooled
before being compared with the imaging data from typical
individuals, this could provide a distorted and potentially
misleading view of how neural processing differs in indi-
viduals with HFASD. Future studies that compare neural
activity in autistic individuals showing an A Type I profile
with activity from those showing an AType II profile would
be needed to better understand the origins of atypical per-
ceptual generalization.

Predictions and future directions

The present simulations predict that differences in general-
ization between individuals with and without ASD should
be most pronounced when the task requires classifying
highly distorted, novel prototypes (i.e., when the task is
most difficult). Consequently, the capacity of a visual
category-learning task to reveal differences between indi-
viduals with and without autism may depend strongly on the
range of distortions used to train and test the participants.
More generally, our simulations suggest that task difficulty
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may differentially degrade performance by individuals with
HFASD. For instance, ANNs that generalized like AType II
individuals had a learning rate much lower than the TD
model. For classification tasks in which the stimuli are
easily distinguished, even large differences in learning rates
will minimally impact acquisition. When the stimuli have
overlapping features, however, the negative impacts of
slower learning rates will become more evident. The present
simulations predict that when perceptual category-learning
tasks are calibrated in difficulty, such that all children
learn the tasks at similar rates, differences in general-
ization patterns should be minimal (as reported by
Vladusich et al., 2010).

Our simulations also make the surprising prediction that
training participants with canonical prototypes alone (i.e.,
with no prototype distortions presented during training) and
random stimuli should not only increase the capacity of
category-learning tasks to reveal atypical perceptual catego-
rization in children with HFASD, but may also help to
identify which neural deficits are disrupting learning and
generalization. Furthermore, the reduced-LR model predicts
that such training may produce generalization patterns in
children with HFASD that are closer to those observed in
typical children who have been trained with more varied
stimuli. In other words, if synaptic plasticity deficits con-
tribute to atypical category learning, then to get children
with HFASD (in particular, those with AType II profiles) to
perceptually categorize like TD children, it may be benefi-
cial to train them with a reduced set of stimuli that do not
correspond to the actual exemplars that they need to learn to
classify. The idea that training with a few artificial examples
could facilitate real-world generalization may seem counter-
intuitive, given past reports of hyperspecific learning by
individuals with ASD. A potentially comparable situation
is seen in infant speech learning, however, in that exposure
to “motherese” can increase an infant’s ability to distinguish
more typical speech sounds (Liu, Kuhl, & Tsao, 2003;
Werker et al., 2007). Hyperspecific learning could potential-
ly be less problematic, and perhaps even beneficial, when
the stimuli about which participants are learning are super-
normal stimuli that encapsulate and/or exaggerate prototyp-
ical features of the natural stimuli.

Experimental tests of these predictions can facilitate fur-
ther analysis and development of more sophisticated com-
putational models of autism. Of the computational
approaches explored here, methods instantiating dysfunc-
tional neural plasticity or synaptic homeostasis mechanisms
produced generalization patterns that were the most similar
to those of children with HFASD. It seems unlikely, how-
ever, that only a subset of individuals with autism would
show the effects of such neural abnormalities. Future
models of category learning by individuals with autism
should account for observed heterogeneities in learning

and generalization more simply and precisely. Ultimately,
identifying how variations in neural substrates contribute to
atypical categorical processing by individuals with ASD can
facilitate the development of treatment strategies by clarify-
ing which underlying factors may contribute to both percep-
tual and social deficits (Church et al., 2010; Happé & Frith,
2006; Plaisted, 2001).
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