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Abstract
Left-right asymmetries have been noted in tasks requiring the
classification of many visual stimuli, including Navon figures,
spatial frequency gratings, and faces. The Double Filtering
by Frequency (DFF) model (Ivry & Robertson, 1998), which
postulates asymmetric frequency filtering on task-relevant
frequency bands, has been implemented to account for
asymmetric processing of each stimulus type above, but does
not provide a fully mechanistic explanation, nor does it have
direct neural correlates. The Differential Encoding (DE)
model (Hsiao, Shahbazi, & Cottrell, 2008), which postulates
that a known asymmetry in patch connectivity drives visual
processing asymmetries, has previously been used to account
for only one stimulus type. Here, we refine the DE model
to match the published patch asymmetry more precisely and
show that the DE model generalizes to three of the four
datasets mentioned above. Examination of the failure to match
all datasets suggest a possible reinterpretation of the original
dataset itself.
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Introduction
A large literature of experimental psychology and cognitive
imaging studies has established the existence of a wide range
of left-right asymmetries in the classification of many visual
stimuli. A typical paradigm consists of briefly presenting a
stimulus to the left or right of fixation, then requiring subjects
to perform a classification task, such as whether a target stim-
ulus was present or not. Because information from the left
visual field (LVF) is initially directed only to the right cere-
bral hemisphere (RH), and right visual field (RVF) to the left
cerebral hemisphere (LH), comparisons of task performance
between LVF/RH and RVF/LH can indicate asymmetries in
hemispheric processing. Visual stimuli which have shown
such asymmetries in these types of tasks include Navon fig-
ures (Sergent, 1982) consisting of a large, “global”-level fig-
ure composed of smaller, “local”-level figures (see Figure
3b), spatial frequency gratings (Christman, Kitterle, & Hel-
lige, 1991; Kitterle, Hellige, & Christman, 1992), and faces
(Young & Bion, 1981; Brady, Campbell, & Flaherty, 2005).

Ivry and Robertson (1998) developed the Double Filtering
by Frequency (DFF) theory to account for these asymmetries.

The computational model they implemented aimed to account
for three particular experiments from the literature, thought to
express core features of the data:
• Sergent (1982): showed the basic hemisphere × level

interaction of the local/global literature, with responses
to targets presented at the smaller, “local” level show-
ing faster reaction times when presented to the RVF/LH,
and responses to targets presented at the larger, “global”
level showing faster reaction times when presented to the
LVF/RH.

• Kitterle et al. (1992): showed that reaction times in two
different classification tasks, using the same stimuli but
requiring use of information at different spatial frequen-
cies, interacted with the visual field/hemisphere of presen-
tation. Responses to the task requiring high spatial fre-
quency (HSF) information showed faster reaction times
when presented to the RVF/LH, and responses to the task
requiring low spatial frequency (LSF) information showed
faster reaction times when presented to the LVF/RH.

• Christman et al. (1991): showed that discrimination be-
tween two stimuli which differed by a single spatial fre-
quency interacted with the visual field/hemisphere of pre-
sentation, based on the relative frequency of the discrimi-
native spatial frequency compared to the rest of the spatial
frequencies contained in the stimuli. When the discrimi-
native frequency was higher than the frequency content of
the rest of the stimulus, responses were faster for presen-
tation to the RVF/LH; when the discriminative frequency
was lower than the frequency content of the rest of the stim-
ulus, responses were faster for presentation to the LVF/RH.

The DFF model replicated the core features of each of the
above studies. Later, Hsiao, Shieh, and Cottrell (2008)
showed that the DFF theory could also account for the so-
called ’left-side bias’–the tendency for people to associate
face identity with the right-side of a person’s face (appearing
in the LVF of the viewer) (Brady et al., 2005).

The DFF model, while it accounts for all these data, re-
quires a homunculus to input the frequency range of interest
for the particular task being modeled, rather than discovering
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the task-relevant frequency range through training. In addi-
tion, no neurophysiological evidence has been found for spa-
tial frequency filtering in cortex.

Hsiao, Shahbazi, and Cottrell (2008) took a very differ-
ent approach to the problem of explaining visual process-
ing asymmetries. Rather than starting with a theory of the
algorithms behind the asymmetries (Marr’s “algorithmic”
level), they created a model of an anatomical asymmetry
(Marr’s “implementation” level) and asked whether it could
account for the asymmetries in classification of visual stim-
uli observed in behavioral studies. They used an asymme-
try in inter-patch connectivity (Galuske, Schlote, Bratzke, &
Singer, 2000), one of the few known network-level asym-
metries, and the only one suggested to be related to lo-
cal/global processing asymmetry (Galuske et al., 2000; Hut-
sler & Galuske, 2003). This asymmetry was found in BA22,
an auditory association area, and not in primary auditory cor-
tex. This matches current theory in the local/global literature,
where it has been suggested that local/global processing dif-
ferences occur beyond early primary sensory areas (Sergent,
1982; Ivry & Robertson, 1998), motivating the use of this
asymmetry to model tasks involving local/global processing.

Hsiao et al. used this connectivity pattern as inspiration
to implement a simple “autoencoder” neural network with
differential connectivity (see Figure 2) to encode the stim-
uli, and a simple perceptron to perform the task using the
autoencoders’ learned representations (see Methods section
for details on this model). They tested it to see whether this
anatomical asymmetry could account for a subset of the data
modeled by Ivry and Robertson. Using precisely the same
small, 1-dimensional inputs that Ivry and Robertson created
for modeling a reduced version of Sergent’s study, Hsiao
et al’s “Differential Encoding” (DE) model showed a hemi-
sphere × level interaction that matched Sergent’s human data
more closely than that of Ivry and Robertson’s DFF model.
Hsiao et al then constructed realistic 2D bitmaps of Sergent’s
Navon stimuli, trained 2D versions of the DE models on these
realistic stimuli, and again showed a hemisphere × level in-
teraction that was a better quantitative match to the original
human data than the results published by Ivry and Robertson
using their DFF model.

The DE model was able to address issues with the DFF
model by implementing an anatomical asymmetry. The use of
a secondary network for classification allows the learning al-
gorithm to select task-relevant information, rather than man-
ually selecting frequency bands as does the DFF model.

However, the DE model did not address most of the data
accounted for by the DFF, including two local/global stud-
ies (Kitterle et al., 1992; Christman et al., 1991), one face-
processing study (Young & Bion, 1981), and the relationship
between local/global processing and spatial frequency pro-
cessing. In addition, the DE model used parameters for num-
ber of connections and distribution shape that were very dif-
ferent from the parameters reported in the literature.

Here we improve the model’s fidelity to neural data. We

show that this model accounts for three of the four studies
described above. We also show that this model filters fre-
quencies in a manner consistent with the human literature.

Methods
The “Differential Encoding” (DE) model is based on an
asymmetry in “patch” connectivity found in BA 22 (Galuske
et al., 2000). “Patches” are found in many cortical areas
across species (monkeys, humans, cats, rodents) and across
sensory and association areas. Patches are thought to be a
level of organization akin to a macro-column, consisting of
thousands of selectively interconnected neurons within a cor-
tical area. These patches selectively interconnect to a small
subset of other local patches through horizontal connections
through the grey matter. These patches are named because an
injection of dye into the cortical surface will label cortex at
the injection site, as well as rather discrete “patches” of sur-
rounding cortex (see Figure 1) (Amir, Harel, & Malach, 1993;
Levitt & Lund, 2002).

Figure 1: Drawing of “patches” in V4. Dark arrow indicates
site of dye injection. Reproduced (without permission) from
Amir et al. (1993).

The function of these inter-patch connections is not known.
Briefly, we propose here that horizontal connections lead to
interconnected patches, biasing each other to process features
shared across the interconnected group. We therefore im-
plement a feed-forward model, where the hidden units dis-
cover the correlated features shared across interconnected in-
put “patches” across a set of input stimuli.

The “Differential Encoding” (DE) model includes two au-
toencoder neural networks with differences in connectivity,
one for each hemisphere. Unlike most autoencoders, the hid-
den units of these models connect to a small subset of the
input and output banks (see Figure 2). Each hidden unit has a
position in the input (and output) arrays, and a fixed number
of connections to the input (and output) arrays are sampled
from a Gaussian distribution centered at that hidden unit’s
position in the input (and output). The LH and RH autoen-
coders have the same number of hidden units and sample the
same number of connections to the input (and output) for each
hidden unit. The only difference between the networks, then,
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is the width (σ) of the Gaussian distribution. In accordance
with the findings of Galuske et al. (2000), the left hemisphere
network had a wider distribution than the right hemisphere
network (see Figure 2).

Figure 2: Representation of two hidden units for LH (left) and
RH (right) autoencoder networks, along with their connec-
tions. The connections are randomly sampled from a Gaus-
sian distribution centered on each hidden unit’s position in
the input array. The Gaussian distribution used for the LH is
wider than that used for the RH. Not pictured are the classifi-
cation networks which operate on the hidden unit encodings
extracted from the autoencoder networks after training.

The number of hidden units was varied from extremely
small (13) to extremely large (800) values. Results did not
differ qualitatively when the number of connections per hid-
den unit varied to allow for the same number of overall
weights to be used to learn the images. If too few weights
were used, the networks could not learn the training set well
enough for a meaningful analysis. After these initial explo-
rations, the final simulations were run with the number of
connections per hidden unit fixed to be within the range re-
ported by Amir et al. (1993) in visual cortex (between 8 and
15), and the number of hidden units were chosen to allow
equal spacing across the input image with enough total pa-
rameters to learn the images.

Each LH and RH network is constructed by randomly sam-
pling connections for each hidden node. Gaussian distribu-
tions were used such that inter-patch distance values were
similar to those calculated from data reported in (Galuske et
al., 2000). On average, patches had 1.75 times the width of
a single patch between them in the RH, and 2.05 in the LH.
Here, we considered the size of a patch to be a pixel, and
chose sigmas such that when inter-patch distance was mea-
sured after randomly sampling connections, on average there
were 1.75 pixels between connections in the RH, and 2.05 in
the LH.

Greyscale images are constructed for each task stimulus.
The autoencoders are trained via of backpropagation of error
(Rumelhart, Hinton, & Williams, 1986) to reproduce these
greyscale images from the input to the output. Once the au-
toencoders reach a pre-determined performance level, train-
ing stops. Each stimulus image is then presented to the

trained autoencoder network, and the activation of the hidden
units is recorded. These encodings, which differ only due to
the differences in connectivity structure between LH and RH
networks, are then used as inputs to a separate feed-forward
neural network, which is trained to classify these encodings
according to the behavioral task for the experiment.

For a single experiment, multiple “instances” of each LH
and RH network are constructed and trained; each “instance”
differs only in the random samples of its connections. The
number of instances is determined by matching the total num-
ber of trials used both in the modeling experiment and in the
corresponding behavioral experiment, such that the statisti-
cal power of each experiments are equated. Performance is
evaluated on each model individually, then performance over
all “instances” of a hemisphere are averaged. Average model
error for each model hemisphere is compared to average re-
action time of the corresponding visual field in the human ex-
periment, with both measures conceived as measures of diffi-
culty or uncertainty in processing.

In order to examine how the different connectivity struc-
tures affect spatial frequency encoding, each stimulus image
is presented to a trained autoencoder. Each output image
produced is examined for spatial frequency content, and a
2D power spectrum across all images in the stimulus set is
constructed. Each 2D power spectrum is translated to a 1D
power spectrum by measuring the linear distance from the
pixel carrying the f0 (intensity) power to each pixel in the 2D
power spectrum, then sorting all linear distances and averag-
ing over any pixels with the same linear distance. Each 1D
power spectrum is then compared to the power spectrum of
the original image. The difference in 1D power spectrums
is then compared across hemispheres, showing for each fre-
quency which hemisphere has encoded information closer to
the original image than the other.

Experiments and Results
Sergent (1982) simulations
16 binary images (31x13 pixels) of Navon stimuli (letters [H,
T, F, L] each appeared at local and global levels in all possi-
ble combinations) (see Figure 3b for example stimuli) were
presented to 68 LH (σ = 6.0) and RH (σ = 3.0) autoencoder
models to match the total number of trials in Sergent’s hu-
man data. Each autoencoder network had 360 hidden units,
with each hidden unit connecting to 8 input and output units.
Each autoencoder network was trained to 0.005 average error
per output unit, then hidden unit encodings were extracted.
A perceptron classifier with 360 input units and one output
unit was trained to classify each of the 16 Navon stimuli as
containing a target or not.

As in Hsiao, Shahbazi, and Cottrell (2008), the net-
work showed a significant hemisphere × level interac-
tion (Two-factor, within-subject repeated measures ANOVA;
F(1,67)=8.62; p< 0.01). We ran this same modeling exper-
iment and analysis for all 6 combinations of target and dis-
tracter letters, to see if results would generalize. This only
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Figure 3: Original and model results for Sergent task
(a) Original hemisphere × level interaction; reproduced

(without permission) from Sergent (1982)
(b) Sample Navon stimulus used in our modeling experiment
(c) DE model hemisphere × level interaction
(d) DE model spatial frequency analysis of output images,

showing a RH advantage (above zero on Y-axis) for LSF
(towards left side of X-axis) and a LH advantage (below
zero on Y-axis) for HSF (towards right side of X-axis)

required training new classification neural networks, as the
stimuli in each experiment remained the same. Each of these
experiments showed a statistically significant hemisphere ×
level interaction.

Comparing the 1D power spectrums created from the out-
put images of the autoencoder neural networks, we saw a
clear tendency for the RH network to be closer to the power
spectrum of the original image for LSFs, and the LH network
to be closer to the power spectrum of the original image for
HSF (see Figure 3d). These trends matched the large liter-
ature reporting better performance on LSF for LVF/RH and
better performance on HSF for RVF/LH.

Kitterle et al (1992) simulations

40 greyscale images (31x13 pixels), each consisting of a low
or high frequency grating, the grating either being a sine or
square wave, and shown at one of 10 phases (see Figure 4b for
example stimuli), were presented to 40 LH (σ = 6.0) and RH
(σ = 3.0) autoencoder models. Each autoencoder network
had 360 hidden units, with each hidden unit connecting to 8
input and output units. Each autoencoder network was trained
to 0.005 average error per output unit, then hidden unit en-
codings were extracted. Two identical neural networks with
360 input units, ten hidden units, and one output unit were
trained to classify each of the 40 stimuli. One classification
network was trained to discriminate between wave type (sine
vs square) and to ignore the frequency of the waves; this task
required use of HSF information. The other classification net-

work was trained to discriminate between the two frequencies
of the waves and to ignore the wave type; this task required
use of LSF information. Both networks were trained with the
same training parameters.

The first classification network showed a significant ef-
fect of hemisphere (F(1,39)=4.06; p< 0.05), with the LH
network showing better performance. The second classi-
fication network showed a significant effect of hemisphere
(F(1,39)=4.53; p< 0.04), with the RH network showing bet-
ter performance. Across the two tasks, the networks showed
a significant hemisphere × task interaction (Two-factor,
within-subject repeated measures ANOVA; F(1,39)=9.89; p<
0.002). Note that the main effect of task-type was not pre-
served; our models found discriminating the wave type to be
an easier task than discriminating between two frequencies;
Kitterle et al. (1992) reported the opposite result for their hu-
man participants.

Figure 4: Original and model results for Kitterle task
(a) Original hemisphere × task interaction; reproduced

(without permission) from Kitterle et al. (1992)
(b) Sample stimuli used in the modeling study
(c) DE model hemisphere × task interaction
(d) DE model spatial frequency analysis of output images,

showing a RH advantage (above zero on Y-axis) for LSF
(towards left side of X-axis) and a LH advantage (below
zero on Y-axis) for HSF (towards right side of X-axis)

Face Processing simulations
Young and Bion (1981): Face Recognition Young and
Bion (1981) (and other) studies have shown a RH advantage
for face recognition. We set out to replicate this general find-
ing.

The same face stimuli used in Hsiao, Shieh, and Cottrell
(2008), which used the DFF model to show a left-side bias,
were used to construct greyscale images in this study. The
dataset contained 30 individuals with 8 expressions each; 4
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expressions used in training, and 4 different expressions were
used in the data collection/testing phase. These face stimuli
were more complex, and so required more parameters to train
to a lesser error criterion. The face stimuli were presented to
40 LH (σ = 8.0) and RH (σ = 3.0) autoencoder models. Each
autoencoder network had 360 hidden units, with each hid-
den unit connecting to 12 input and output units; ; the wider
LH gaussian was selected to space out the greater number of
connections per hidden unit. Each autoencoder network was
trained to 0.01 average error per output unit, then hidden unit
encodings were extracted. A neural network with 360 input
units, 25 hidden units, and 30 output unit was used to classify
each of the 120 test images as one of the 30 individuals.

A significant effect of hemisphere on face identification
accuracy was found (ANOVA; F(1,39) =10.33, p< 0.002).
These effects were consistent across the training and test sets.

Figure 5: Stimuli and power spectrum for left-side bias task
(a) Sample stimuli for one individual across four expressions

(from the CAFE dataset)
(b) DE model classification of individual face recognition

identity (Young & Bion task); error-bars represent stan-
dard error of the mean

(c) DE model spatial frequency analysis of output images,
showing a RH advantage (above zero on Y-axis) for LSF
(towards left side of X-axis) and a LH advantage (below
zero on Y-axis) for HSF (towards right side of X-axis)

Brady et al. (2005): Left-Side Bias The same face stim-
uli used in Hsiao, Shieh, and Cottrell (2008), which used the
DFF model to show a left-side bias, were used to construct
greyscale face images. 240 greyscale face images (34x25 pix-
els; 30 individuals; 4 expressions used in training, 4 different
expressions used in testing) were used to create left and right
chimeric faces: faces with one side duplicated across the mid-
line to the other. The same network parameters were used as
the face recognition simulation above for training.

For each set of chimeric faces, a significant effect for hemi-
sphere was found, with a RH advantage for face recognition
in each case (left chimeric: F(1,39)=7.58, p< 0.01; right
chimeric: F(1,39)=8.83; p< 0.01), again replicating a RH
advantage for face identification. Comparing across left and
right chimeric faces, both hemispheres showed a significant
preference for left chimeric images, replicating the left-side
bias effect.

Christman et al. (1991) simulations
Two sets of 16 greyscale images (31x13 pixels) were con-
structed, each consisting of a two types of stimuli. The first
type stimulus consisted of two frequency gratings at different
relative phases to each other. The second stimulus type con-
sisted of the first set of stimuli, with a third frequency grat-
ing superimposed upon them. In one stimulus set, the third
frequency grating was at a higher spatial frequency than the
other two frequency gratings; in the second stimulus set, it
was at a lower spatial frequency than the other two. Impor-
tantly, the third frequency grating was of exactly the same
spatial frequency in both stimulus sets (see Figure 6b for ex-
ample stimuli). There were 4 phase variations for each stim-
ulus type in each stimulus set.

Figure 6: Original results, sample model stimuli, and model
power spectrum
(a) Sample stimuli created to train DE models
(b) DE model spatial frequency analysis of output images,

showing much flatter power spectrum differences than all
other stimuli, with weak RH advantage (above zero on Y-
axis) for LSF (towards left side of X-axis)

(c) and a weak LH advantage (below zero on Y-axis) for HSF
(towards right side of X-axis)

Each set of greyscale images was presented to 64 LH
(σ = 6.0) and RH (σ = 3.0) autoencoder models. Each au-
toencoder network had 360 hidden units, with each hidden
unit connecting to 8 input and output units. Each autoen-
coder network was trained to 0.005 average error per output
unit, then hidden unit encodings were extracted. For each set
of greyscale images, a neural network with 360 input units,
ten hidden units, and one output unit were trained to classify
each of the 16 stimuli.

For both stimulus sets (LSF and HSF), there was a signif-
icant effect of stimulus class, with the 3-component stimu-
lus being harder to classify than the 2-component stimulus.
However, there was no hemisphere × stimulus class inter-
action. Looking at the power spectrum differences between
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the two stimulus classes (Figure 6b and 6c), and comparing
them to the previous power spectrum differences, it is clear
that there is much less encoding asymmetry between the two
model hemispheres for these stimuli as compared to all other
stimuli used in model experiments within this paper.

We tested a few possible explanations for this. We tried
many different combinations of spatial frequency gratings;
this varied which model hemisphere showed better perfor-
mance, but no reliable hemisphere × stimulus class interac-
tion. We tried larger images, to expand the range of spatial
frequencies that could be encoded, but again no consistency
was found. Lastly, we tried training the autoencoder on sep-
arate dataset, then extracting hidden unit encodings on the
task-relevant stimuli. Again, this did not show any consistent
interaction.

Further work is warranted to better characterize whether
the DE model can account for this critical dataset. We have
created (elsewhere) a developmental model of this asymme-
try which suggests that this dataset may be modeled by en-
gagement of more than one cortical area showing asymme-
try. This pattern is seen in neuroimaging results reported by
(Hopf et al., 2006), for example, where a leftward asymmetry
of an earlier visual processing area is engaged by a task at
the “local” level, and a rightward asymmetry of a later visual
processing area is engaged by a task at the “global” level.
Variations in average inter-patch distance based on cortical
area Amir et al. (1993) suggest that different areas may have
different frequency preferences. This would suggest that “rel-
ative frequency” processing may in fact be simply selecting
different absolute frequency filters, implemented in different
cortical areas, based on task demands. We are currently inves-
tigating whether this is might provide an alternate explanation
to these data, and the idea of relative frequency encoding in
general.

Conclusions
Here, we showed that an asymmetry in local connectivity
can account for local/global behavioral data, face processing
data, and matches spatial frequency asymmetries reported in
the literature. This model provides a biologically grounded
implementation for these phenomena, and the analyses here
showing consistent frequency filtering differences in the
model hemispheres are consistent with the current algo-
rithmic explanation for visual processing asymmetries via
frequency filtering. Unlike the DFF model, however, these
frequency filtering differences are found at a post-sensory
encoding stage. Further work must be done to investigate
whether our failure to model the results of Christman et al.
(1991) is due to practical modeling concerns, or suggests a
fundamentally different approach to modeling local/global
processing asymmetry.
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