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Survival depends on successfully foraging for food, for which
evolution has selected diverse behaviors in different species.
Humans forage not only for food, but also for information. We
decide where to look over 170,000 times per day, approximately
three times per wakeful second. The frequency of these saccadic
eye movements belies the complexity underlying each individual
choice. Experience factors into the choice of where to look and can
be invoked to rapidly redirect gaze in a context and task-appropri-
ate manner. However, remarkably little is known about how
individuals learn to direct their gaze given the current context and
task. We designed a task in which participants search a novel scene
for a target whose location was drawn stochastically on each trial
from a fixed prior distribution. The target was invisible on a blank
screen, and the participants were rewarded when they fixated the
hidden target location. In just a few trials, participants rapidly found
the hidden targets by looking near previously rewarded locations
and avoiding previously unrewarded locations. Learning trajectories
were well characterized by a simple reinforcement-learning (RL)
model that maintained and continually updated a reward map of
locations. The RL model made further predictions concerning sensi-
tivity to recent experience that were confirmed by the data. The
asymptotic performance of both the participants and the RL model
approached optimal performance characterized by an ideal-observer
theory. These two complementary levels of explanation show how
experience in a novel environment drives visual search in humans
and may extend to other forms of search such as animal foraging.
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The influence of evolution can be seen in foraging behaviors,
which have been studied in behavioral ecology. Economic

models of foraging assume that decisions are made to maximize
payoff and minimize energy expenditure. For example, a bee
setting off in search of flowers that are in bloom may travel kilo-
meters to find food sources. Seeking information about an envi-
ronment is an important part of foraging. Bees need to identify
objects at a distance that are associated with food sources.
Humans are also experts at searching for items in the world, and in
learning how to find them. This study explores the problem of how
humans learn where to look in the context of animal foraging.
Our daily activities depend on successful search strategies for

finding objects in our environment. Visual search is ubiquitous in
routine tasks: finding one’s car in a parking lot, house keys on
a cluttered desk, or the button you wish to click on a computer
interface. When searching common scene contexts for a target
object, individuals rapidly glean information about where targets
are typically located (1–9). This ability to use the “gist” of an image
(3, 4) enables individuals to perform flexibly and efficiently in fa-
miliar environments. Add to that the predictable sequence of eye
movements that occurs when someone is engaged in a manual task
(10) and it becomes clear that despite the large body of research
on how image salience guides gaze (2, 11), learned spatial asso-
ciations are perhaps just as important for effectively engaging our
visual environment (10, 12, 13). Surprisingly, however, little re-
search has been directed to how individuals learn to direct gaze in
a context and task-appropriate manner in novel environments.

Research relevant to learning where to look comes from the
literature on eye movements, rewards, and their expected value.
Like all motor behavior, saccades are influenced by reward, oc-
curring at shorter latency for more valued targets (14). In fact,
finding something you seek may be intrinsically rewarding (15).
Refining the well-known canonical “main sequence” relationship
between saccade amplitude and velocity, the value of a saccade
target can alter details of the motor plan executed, either speeding
or slowing the saccade itself depending upon the value of that
target for the subject (16, 17). This result is especially interesting in
light of the research indicating that the low-level stimulus features,
which have an expected distribution of attracting fixations (18), are
different (19) and perhaps also differently valuable (20) depending
on their distance from the current fixation location. Taken to-
gether these results underscore the complex interplay of external
and internal information in guiding eye movement choice.
Two early foundational studies from Buswell (21) and Yarbus

(22) foreshadowed modern concepts of a priority or salience
map by showing that some portions of an image are fixated with
greater likelihood than others. Both researchers also provided early
evidence that this priority map effectively changes depending on
the type of information sought. Yarbus observed that the patterns
of gaze that followed different scene-based questions or tasks given
to the observer were quite distinct, suggesting that the observer
knew where to find information in the scene to answer the question
and looked specifically to areas containing that information when it
was needed. Henderson and coworkers (23) have replicated this
result for the different tasks of visual search and image memori-
zation. However, Wolfe and coworkers (24), using a slightly dif-
ferent question and task paradigm, failed to find evidence that
saccade patterns were predictive of specific mental states. Re-
gardless of specific replications of Yarbus’s demonstration, it is
clear that scene gist—context-specific information about where
objects are typically found—emerges very quickly and guides
target search of a scene with a known context (4). For ex-
ample, when shown a street scene, an observer would imme-
diately know where to look for street signs, cars, and pedestrians
(Fig. 1A).
Castelhano and Heaven (9) have also shown that in addition to

scene gist itself, learned spatial associations guide eye movements
during search. Subjects use these learned associations as well as
other context-based experience, such as stimulus probability, and
past rewards and penalties (25–27) to hone the aim of a saccadic
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eye movement. A recent review and commentary fromWolfe et al.
(28) explores the notion of “semantic” guidance in complex, nat-
uralistic scenes as providing knowledge of the probability of finding
a known object in a particular part of a scene. This perspective
relates work on scene gist together with more classic visual search
tasks, offering a framework for considering how individuals might
use past experience to direct gaze in both real-world scenes as well
as in the contrived scenarios of our laboratories.
Quite distinct from the literature on visual search is the litera-

ture on another sort of search that is commonly required of ani-
mals and people: foraging. Foraging agents seek food, which is
often hidden in the environment in which they search (Fig. 1B).
The search for hidden food rewards changes not only with the
position of the reward, but also with the size of the distribution of
rewards (29). Other work has cast foraging behavior in terms of
optimal search (30). What distinguishes foraging from visual
search tasks is that visual search tasks have visible cues that drive
search, in addition to contextual information that specifies prob-
able target location. To make visual search more like foraging, we
can strip the visible cues from visual search. A visual search task
devoid of visual cues would allow us to determine whether there
are underlying commonalities between these two types of search
and whether general principles of search might emerge from such
an investigation.
The importance of searching for hidden and even invisible

targets is underscored by human participants engaged in large-
scale exploration approximating animal foraging (31, 32). In one
such paradigm (32), children were told to explore a room with a
floor composed of box-like floor tiles, one of which contained a

reward item. Interestingly, children explored the environment
differently when they were instructed to search with their non-
dominant hand than with their dominant hand. Specifically, more
“revisits” were necessary in the nondominant hand condition. This
result suggests that learning and motor effort factor into perfor-
mance on tasks that might seem to be automatic, which suggests
methods for modeling foraging-like behavior. The additional
motor effort that would be required to reduce metabolically ex-
pensive revisits in a foraging scenario seemed to have engaged
memory systems to a greater degree than what is typically observed
in traditional “visual” search tasks.
The reinforcement-learning (RL) framework has become widely

accepted for modeling performance in tasks involving a series of
movements leading to reward (33, 34). In addition, for organisms
across many levels of complexity, RL has been shown to be an
appropriate framework to consider adaptive behavior in complex
and changing environments (35, 36). Here we describe per-
formance in our task in terms of a RL perspective. Participants’
learning trajectories were well characterized by a simple RL
model that maintained and continually updated a reward map of
locations. The RL model made further predictions concerning
sensitivity to recent experience that were confirmed by the data.
The asymptotic performance of both the participants and the
RL model approached optimal performance characterized by an
ideal-observer theory assuming perfect knowledge of the static
target distribution and independently chosen fixations. These two
complementary levels of explanation show how experience in a
novel environment drives visual search in humans.
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Fig. 1. Visible and hidden search tasks. (A) An experienced pedestrian has prior knowledge of where to look for signs, cars, and sidewalks in this street scene.
(B) Ducks foraging in a large expanse of grass. (C) A representation of the screen is superimposed with the hidden target distribution that is learned over the
session as well as sample eye traces from three trials for participant M. The first fixation of each trial is marked with a black circle. The final and rewarded
fixation is marked by a shaded grayscale circle. (D) The region of the screen sampled with fixation shrinks from the entire screen on early trials (blue circles; 87
fixations over the first five trials) to a region that approximates the size and position of the Gaussian-integer distributed target locations (squares, color
proportional to the probability as given in A) on later trials (red circles; 85 fixations from trials 32–39). Fixation position data are from participant M.
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Results
Humans Rapidly Learn to Find Hidden Targets. In visual search,
previous experiments failed to isolate completely the visual ap-
pearance of a target from the learned location of the reward; in all
cases a visual indication of a target, or amemory of amoments-ago
visible target (26) and its surroundings, were available to guide the
movement. To understand how participants learn where to look in
a novel scene or context where no relationship exists between vi-
sual targets and associated rewards or penalties, we designed
a search task in which participants were rewarded for finding
a hidden target, similar to the scenario encountered by a foraging
animal (Fig. 1C).
Participants repeatedly searched a single unfamiliar scene

(context) for a target. However, to study the role of task knowl-
edge in guiding search apart from the visual cues ordinarily used to
identify a target, the target was rendered invisible. The partic-
ipants’ task was to explore the screen with their gaze and find
a hidden target location that would sound a reward tone when
fixated. Unbeknownst to each participant, the hidden target po-
sition varied from trial to trial and was drawn from a Gaussian
distribution with a centroid and spread (target mean and SD, re-
spectively) that was held constant throughout a session (Fig. 1C).
At the start of a session, participants had no prior knowledge

to inform their search; their initial search was effectively “blind.”
As the session proceeded participants accumulated information
from gaining reward or not at fixation points and improved their
success rate by developing an expectation for the distribution of
hidden targets and using it to guide future search (Fig. 1D).
After remarkably few trials, participants gathered enough in-

formation about the target distribution to direct gaze efficiently
near the actual target distribution, as illustrated by one partic-
ipant’s data in Fig. 1 C and D. We observed a similar pattern of
learning for all participants: Early fixations were broadly scattered
throughout the search screen; after approximately a dozen trials,
fixations narrowed to the region with high target probability.
A characterization of this effect for all participants is shown in

Fig. 2A. The average distance from the centroid of the target
distribution to individual fixations in a trial drops precipitously
over roughly the first dozen trials. Fig. 2A shows this distance for
all participants in the 2° target spread condition. The asymptotic
distance from centroid increased monotonically with the target
spread (Table 1).
A measure of search spread is the SD of the set of fixations in

a trial. The search spread was initially broad and narrowed as the
session progressed, as shown in Fig. 2B for all participants in the
2° target-spread condition. The asymptotic search spread mono-
tonically increased with the target-spread condition (Table 1).
These data suggest that participants estimated the spread of the
hidden target distribution and adjusted their search spread ac-
cordingly. Also, the median number of fixations that participants
made to find the target (on target-found trials) decreased rapidly
within a session to reach an asymptote (Fig. 2C).

Humans Approach Ideal-Observer Performance.Wenow consider the
behavior of participants once performance had stabilized. Taking
trials 31–60 to reflect asymptotic behavior, we examined the effi-
ciency of human search in comparison with a theoretical optimum.
An ideal observer was derived for the Hidden Target Search Task
assuming that fixations are independent of one another and that
the target distribution is known, and the expected number of trials
is minimized (Fig. S1 and Table S1). The dashed lines in Fig. 2
mark ideal-observer performance. Ideal search performance
requires a distribution of planned fixation “guesses” that is √2
broader than the target distribution itself (37). As seen in Fig. 2 B
and C, the performance of participants hovered around this
ideal search distribution after about a dozen trials.
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Fig. 2. Learning curves for hidden-target search task. (A) The distance be-
tween the mean of the fixation cluster for each trial to the target centroid,
averaged across participants, is shown in blue and green and indicates the
result of 200 simulations of the reinforcement-learning model for each
participant’s parameters. The SEM is given for both. The ideal-observer
prediction is indicated by the black dotted line. (B) The SD of the eye position
distributions or “search spread” is shown for the average of all participants
(blue) and the RL model (green) with SEM. The dashed line is the ideal-
observer theoretical optimum in each case, assuming perfect knowledge of
the target distribution. (C) The median number of fixations made to find the
target on each trial is shown (blue) along with the RL model prediction
(green) of fixation number. The SEM is shown for both.
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Subjects showed a ∼1° bias toward the center of the screen
relative to the target distribution (Table S2), but the calculation
of the ideal behavior assumed subjects searched symmetrically
around the center of the target distribution. Although the addition
of the bias makes the math untenable analytically, a simulated
searcher approximated the expected number of saccades required
to find a target with a systematic 1° bias (Fig. 3). There was es-
sentially no change in the predicted number of saccades or the
search spread (location of the minimum in Fig. 3), except for the
case of the 0.75° target distribution, where the optimum shifted
from a search spread of 0.56° to 0.85°. Intuitively, the effect of bias
was small because the bias was less than the 2° target radius.
Nonetheless, at a 95% confidence level across the three target
distributions, the number of steps, search spread, and step size all
qualitatively and quantitatively match the predictions assuming
the number of saccades was minimized.

Reinforcement Learning Model Matches Human Learning. In addition
to the ideal-observer theory, which characterizes the asymptotic
efficiency of human search, we developed a complementary, mech-
anistic account that captured the learning, individual differences,
and dynamics of human behavior. RL theory, motivated by animal
learning and behavioral experiments (38), suggests a simple and
intuitive model that constructs a value function mapping locations
in space to expected reward. The value function is updated after
each fixation based on whether or not the target is found and is used
for selecting saccade destinations that are likely to be rewarded.
We augmented this intuitive model with two additional as-

sumptions: First, each time a saccade is made to a location, the
feedback obtained generalized to nearby spatial locations; second,
we incorporated a proximity bias that favored shorter saccades. A
preference for shorter saccades was present in the data (Fig. S2)
and has been noted by other researchers (22, 39), some of whom
have shown that it can override knowledge that participants have
about the expected location of a target (40). Incorporating a
proximity bias into the model changed the nature of the task be-
cause the choice of the next fixation became dependent on the
current fixation. Consequently, participants must plan fixation se-
quences instead of choosing independent fixations.
We modeled the task using temporal difference methods (33),

which are particularly appropriate for Markovian tasks in which
sequences of actions lead to reward (Reinforcement Learning
Model and Figs. S2 and S3 give details). The model’s free
parameters were fit to each subject’s sequence of fixations for
each of the first 20 trials. Given these parameters, the model was

then run in generative mode from a de novo state to simulate the
subject performing the task.
Fig. 2 shows the mean performance of the model side by side

with the mean human performance. The model also predicted an
asymptotic search spread that increased with the target spread
(Table 1), consistent with the participants’ aggregate performance.
Similar to the human performance observed in Fig. 2A, the RL
model approaches, but does not reach, the theoretical asymptote.
Like the human participants, the RL model is responsive to
nonstationarity in the distribution, whereas the ideal-observer
theory assumes that the distribution is static. In addition, the

Table 1. Performance at asymptote of learning for participants, the ideal-observer theory, and
a reinforcement-learning model

Target spread condition, °
Mean distance from target centroid

to fixations on trials 31–60, °
Search spread on
trials 31–60, °

Participant data
0.75 1.97 1.14
2.00 4.08 2.80
2.75 4.39 3.70

Ideal-observer theory
0.75 0.70 0.56
2.00 3.36 2.68
2.75 4.74 3.78

Reinforcement-learning model
0.75 3.21 1.56
2.00 4.46 2.61
2.75 6.07 4.29

Data, theory, and model statistics for the mean fixation distance and search spread for 0.75°, 2.0°, and 2.75°
target distribution conditions.

Fig. 3. Optimal search model. Theoretical number of search steps to find the
target for target distributions of size 0.75° (orange), 2° (red), and 2.75° (brown)
was estimated by simulation (circles with mean and SEs from 100,000 trials per
point) and from the theoretical calculation (solid lines) as detailed in Table S1
and Supporting Information. The simulation included the observed 1° bias
seen in the subjects, but the theory lines did not. Solid boxes indicate the
observed values for the subjects (mean and SE). With the added bias, the
minimum moved slightly to the right but was only significant for the 0.75°
target distribution. The cost in terms of extra saccades for nonoptimal search
spreads (away from the minimum) was higher for the larger target dis-
tributions, and the comparatively shallow rise for search spreads above opti-
mal meant that if subjects were to err, then they should tend toward larger
spreads. Indeed, the tendency for larger spreads was evident as subjects star-
ted with large spreads and decreased toward the minimum (Fig. 2). The extra
steps that subjects took to find the target for the 2.75° distribution (Upper
Right) was consistent with the tendency toward small saccades even though
they were quite close to the correct minimum (Fig. S2): The largest saccades
may have been broken up into multiple short saccades.
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model accounted for individual differences (Reinforcement Learn-
ingModel). There are several reasons why the observed consistency
between participants and simulations may be more than an exis-
tence proof and could provide insight into the biological mecha-
nisms of learning (41). TheRLmodel itself had emergent dynamics
that were reflected in the human behavior (Fig. 4 and sequential
effects discussed below). Also the criterion used to train the model
was the likelihood of a specific fixation sequence. A wide range of
statistical measures quite distinct from the training criterion were
used to compare human and model performance: mean distance
from target centroid, SD of the distribution of eye movements, and
the median number of fixations (Fig. 2). Finally, only the first 20
trials were used to train the model, but all of the comparisons
shown in Table 1 were obtained from trials 31–60.
Fig. 2 suggests that participants acquire the target distribution

in roughly a dozen trials and then their performance is static.
However, in the RL model the value function is adjusted after
each fixation, unabated over time. A signature of this ongoing ad-
justment is a sequential dependency across trials—specifically, a
dependency between one trial’s final fixation and the next trial’s
initial fixation. Dependencies were indeed observed in the data
throughout a session (Fig. 4A), as predicted by the model (Fig. 4B)
and explained some of the trial-to-trial variability in performance
(Fig. 2 andReinforcement LearningModel). Participants were biased
to start the next trial’s search near found target locations from re-
cent trials. The influence of previous trials decreases exponentially;

the previous two, or possibly three, trials influenced the current trial’s
saccade choice (Fig. 4C). This exponential damping of previous tri-
als’ influence is approximated by the memoryless case (37), allowing
both the RL model and ideal planner to coexist asymptotically.

Bimodal Distribution of Saccade Lengths. Our motivation in de-
signing the hidden target search task was to link the visual search
and foraging literatures. Performance in our task had features
analogous to those found in the larger context of animal foraging
(Fig. 5). Although individual trials look like Lévy flights—a mix-
ture of fixation and sporadic large excursions that are known to be
optimal in some cases of foraging behavior (42–44)—the length
distribution of all straight line segments is not Lévy-like, but sep-
arates into two distinct length scales like the intermittent search
popularized by Bénichou et al. (30). The shorter length scale,
fixations less than about 1°, corresponds to a local power law
search with a very steep exponent, making it a classic random walk
that densely samples the local space. That local search is combined
with the larger, but rarer, saccades represented by the peaked
hump at step sizes larger than 1°. These are the distinct choices
from the planned distribution described already (i.e., the guess
distribution or value function). The distinctive knee shape in
Fig. 5 is similar to that found in other demanding visual search
tasks (37), as well as intermittent foraging by a wide range of
animals (30, 43).
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is reliably shorter than permuted intertrial distance, as indicated by the points lying above the diagonal. All intertrial distances are larger in the model,
reflecting a greater degree of exploration than in the participants, but this mismatch is orthogonal to the sequential effects. (C) The effect of previous trials
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Discussion
Human search performance can be put into the more general
context of animal foraging, which has close connections with RL
models (36) and optimal search theory (29). The hidden target
search task introduced here has allowed us to separate the in-
fluence of external cues from internal prior information for
seeking rewards in a novel environment (45). In our hidden target
search task, participants explored a novel environment and quickly
learned to align their fixations with the region of space over which
invisible targets were probabilistically distributed. After about
a dozen trials, the fixation statistics came close to matching those
obtained by an ideal-observer theory. This near-match allowed us
to cast human performance as optimal memory-free search with
perfect knowledge of the target distribution. As a complement to
the ideal-observer theory that addresses asymptotic performance,
we developed a mechanistic account of trial-to-trial learning from
reinforcement. Our RL model characterized the time course of
learning, attained an asymptote near ideal-observer performance,
and tied the problem of visual search to a broader theory of
motivated learning.

Natural Environments. The ideal-observer and reinforcement-
learning frameworks provide the foundation for a broader theo-
retical perspective on saccade choice during natural vision, in
which people learn to search in varied contexts for visible targets,
where visual features of the scene are clearly essential. In a
Bayesian framework, the subjects in our task learned the prior
distribution of the hidden targets. In a natural environment, the
prior distribution would be combined with visual information to
determine the posterior distribution, from which saccadic targets
are generated.
Naturalistic environments are nonstationary. For example, an

animal foraging for food may exhaust the supply in one neighbor-
hood and have to move on to another. A searcher must be sensitive
to such changes in the environment. Sequential dependencies (Fig.

4) are a signature of this sensitivity (46–48): Recent targets in-
fluence subsequent behavior, even after the searcher has seemingly
learned the target distribution, as reflected in asymptotic perfor-
mance. Sequential dependencies were predicted by the RL model,
which generated behavior remarkably close to that of the partic-
ipants as a group, and also captured individual idiosyncrasies
(Reinforcement Learning Model). Sensitivity to nonstationary envi-
ronments can explain why our participants and the RL model
attained an asymptotic search distribution somewhat further from
the target centroid than is predicted by an ideal-observer theory
premised on stationarity.
One of the most impressive feats of animal foraging is matching

behavior. Herrnstein’s matching law (49) describes how foraging
animals tend to respond in proportion to the expected value of
different patches. Matching behavior has been studied in multiple
species from honey bees to humans (50–53). However, many of
these laboratory studies effectively remove the spatial element of
foraging from the task by looking at different intervals of re-
inforcement on two levers or buttons; in this setting, animals
quickly detect changes in reinforcement intervals (54) and the
motor effort in switching between spatial patches has been ex-
amined (55). In nature, foraging is spatially extended, and the
hidden-target search paradigm could serve as an effective envi-
ronment for examining an explicitly spatial foraging task in the
context of matching behavior. For example, a version of our hid-
den-target search paradigm with a bimodal distribution could ex-
plore changeover behavior and motor effort by varying the sizes of
the two distributions and distance between them (55).

Neural Basis of Search.The neurobiology of eye movement behavior
offers an alternative perspective on the similarities of visual search
behavior and foraging. The question of where to look next has been
explored neurophysiologically, and cells in several regions of the
macaque brain seem to carry signatures of task components re-
quired for successful visual search. The lateral interparietal (LIP)
area and the superior colliculus (SC) are two brain regions that
contain a priority map representing locations of relevant stimuli
that could serve as the target of the next saccade. Recordings in
macaque area LIP and the SC have shown that this priority map
integrates information from both external (“bottom-up”) and in-
ternal (“top-down”) signals in visual search tasks (56, 57).
Recently, Bisley and coworkers (58) have used a foraging-like

visual search task to show that area LIP cells differentiated be-
tween targets and distracters and kept a running estimate of likely
saccade goal payoffs. Area LIP neurons integrate information
from different foraging-relevant modalities to encode the value
associated with a movement to a particular target (59, 60). The
neural mechanisms serving patch stay-leave foraging decisions
have recently been characterized in a simplified visual choice task
(61), providing a scheme for investigations of precisely how prior
information and other task demands mix with visual information
available in the scene. Subthreshold microstimulation in area LIP
(62) or the SC (63) also biases the selection saccades toward the
target in the stimulated field. Taken together, these results suggest
that area LIP and the SCmight be neural substrates mediating the
map of likely next saccade locations in our task, akin to the value
map in our RL model.
We asked how subjects learn to choose valuable targets in a

novel environment. Recent neurophysiological experiments in the
basal ganglia provide some suggestions on how prior information
is encoded for use in choosing the most valuable saccade target in
a complex environment (64). Hikosaka and coworkers (65) have
identified signals related to recently learned, and still labile, value
information for saccade targets in the head of the caudate nucleus
and more stable value information in the tail of the caudate and
substantia nigra, pars reticulata. Because the cells carrying this
stable value information seem to project preferentially to the SC,
these signals are well-placed to influence saccade choices through
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Fig. 5. Length distributions of saccades in the hidden target task. A turning
point algorithm applied to raw eye movement data yields a distribution of
step sizes for all participants (Reinforcement Learning Model gives details).
Very small “fixational” eye movements comprise the left side of the plot and
large larger saccadic jumps on the right for three different sizes of target
distribution. The points and lines (Loess fits with 95% confidence interval
shading) for each search distribution size, all share a similar shape, particu-
larly a bend at step sizes approaching 1° of visual angle.
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a fast and evolutionarily conserved circuit for controlling orienting
behavior. These results provide a neurophysiological basis for
understanding how experience is learned and consolidated in the
service of the saccades we make to gather information about our
environment about three times each second.

Conclusions
In our eye-movement search task, subjects learned to choose sac-
cade goals based on prior experience of reward that is divorced
from specific visual features in a novel scene. The resulting search
performance was well described by an RL model similar to that
used previously to examine both foraging animal behavior and
neuronal firing of dopaminergic cells. In addition, the search per-
formance approached the theoretical optimum for performance on
this task. By characterizing how prior experience guides eye
movement choice in novel contexts and integrating it with both
model and theory, we have created a framework for considering
how prior experience guides saccade choice during natural vision.
The primate oculomotor system has been well studied, which will
make it possible to uncover the neural mechanisms underlying the
learning and performance of the hidden-target task, which may be
shared with other search behaviors.

Methods
We defined a spatial region of an image as salient by associating it with
reward to examine how participants used their prior experience of finding
targets to direct future saccades. We took advantage of the fact that the goal
of saccadic eye movements is to obtain information about the world and
asked human participants to “conduct an eye movement search to find
a rewarded target location as quickly as possible.” Participants were also
told that they would learn more about the rewarded targets as the session
progressed and that they should try to find the rewarded target location as
quickly as possible. The rewarded targets had no visual representation on
the screen and were thus invisible to the subject. The display screen was the
same on each trial within a session and provided no information about the
target location. The location and the spread of the rewarded target distri-
bution were varied with each session.

Each trial began with a central fixation cross on a neutral gray screen with
mean luminance of 36.1 cd/m2 (Fig. 1). The search screen spanned the central
25.6° of the subject’s view while seated with his or her head immobilized
by a bite bar.

Participants initiated each trial with a button press indicating that they
were fixating the central cross. The same neutral gray screen served as the
search screen after 300 ms of fixation of the cross. Once the fixation cross
disappeared, participants had 20 s to find the rewarded location for that trial
before the fixation screen returned. On each trial an invisible target was
drawn from a predefined distribution of possible targets. The shape of the
distribution was Gaussian with the center at an integer number of degrees

from the fixation region (usually ±6° in x and y) and spread held fixed over
each experimental session. The targets only occurred at integer values of the
Gaussian. The probability associated with a rewarded target location varied
between 4% and 0.1% and was given by the spread of the distribution
(0.75°, 2°, and 2.75° SD). When a subject’s gaze landed within 2° of the
target in both the x and y directions, a reward tone marked the successful
end of the trial. For the target to be “found,” fixation (monitored in real
time as detailed below) needed to remain steady within the target window
for at least 50 ms. This duration ensured that the target was never found
simply by sweeping through during a saccade. If at the end of 20 s the target
was not found, the trial ended with no tone and a fixation cross appeared
indicating the beginning of a new trial.

Trial timing and data collection were managed by the TEMPO software
system (Reflective Computing) and interfaced with the stimulus display using
an extension of the Psychophysics Toolbox (66) running under MATLAB
(MathWorks). Eye movement data were obtained using a video-based eye
tracker (ISCAN), sampled at 240 Hz for humans. Eye data were calibrated by
having the participants look at stimuli at known locations. Eye movements
were analyzed offline in MATLAB. We detected saccades and blinks by using
a conservative velocity threshold (40°/s with a 5-ms shoulder after each sac-
cade) after differentiating the eye position signals. Periods of steady fixation
during each trial were then marked and extracted for further analyses. Eye
positions off of the search screen were discounted from analysis. Visual in-
spection of individual trials confirmed that the marked periods of fixation
were indeed free from saccades or blinks.

Turning Points. In addition to saccades identified by speed criteria, the eye
tracking data were processed to estimate the step-size distribution of all eye
movements, even within a fixation. To that end, blinks were first removed by
removing samples off the screen. Next, we considered the data points three
at a time, xt−1, xt, and xt+1, where x are the 2D data points and t indexes
the time samples, to construct two segments of the eye track a = xt−1 − xt
and b = xt − xt+1. We then tested whether the cosine of the angle between
these two was greater or less than 0.95. If the cosine was greater than 0.95,
then the center point, xt, was marked as a “turning” point. In addition, some
of the large steps slowly curved and this introduced extraneous points (i.e.,
dividing a long step into two short steps). To overcome this problem, we
took advantage of the fact that two long steps almost never occur one after
the other without a dense fixation region in between, and any point with no
neighbors within 0.5° was assumed to be extraneous and was removed. This
resulted in points at which the eye made a significant deviation from ballistic
motion and was used to generate the step size distributions in Fig. 5.
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Ideal Observer Model
The general problem to solve is given a target distribution Tð~xÞ
describing the probability a target is at location~x and a search
window with size R, estimate the guess distribution Gð~xÞ from
which random points are sampled until the target is within R of
the random point. This has been solved previously (1), and we
will just reproduce a simplified version here.
Along with existence of the guess and target distributions,Gð~xÞ

and Tð~xÞ, we assume the following:

1. The target distribution is known.
2. The search points are independently chosen from the guess

distribution.
3. The time required to move from guess point to guess point is

negligible.

These assumptions describe the experimental case quite well
after learning has taken place. Respectively, the subject is fast and
successful, the correlations between eye positions (guesses) are
weak in the sense that their length scale isK18 (Fig. 3), which is
less than the length scale of the search, and the eye moves very
quickly compared with time spent fixating. The assumption of
uncorrelated steps likely fails as the length scale of the search
decreases, that is, for σT = 0:75, where the problem stops being
about search and more about moving the eye to a fixed, learned
location.
Using these assumptions the general idea is to calculate the

probability that a guess will be successful and optimize that to
minimize the total number of guesses. The probability that a guess
is successful for finding a target at location~x is the integral of all
points in the guess distribution that satisfy the range requirement:

Pð~xÞ=
Z

~Cð~xÞ

d~yGð~yÞ;

where Cð~xÞ is the region where a target at position ~x would
be found.
Then, the mean number of steps to find the target is one over

the probability; for example, the mean number of times a die is
rolled before finding a 1 is 6= 1=pð1Þ, where p(1) is the proba-
bility of rolling a 1 or 1=6. Averaging over the probability a target
is actually at position~x, Tð~xÞ, leaves

hni=
Z

d~x
Tð~xÞR

~Cð~xÞd~yGð~yÞ;

and the optimum occurs at

0 =
δ

δGð~yÞ
�
hni+ α

�
1−

Z
d~tG

�
~t
���

;

where α is a Lagrange multiplier associated with normaliza-
tion of G. Under reasonable existence and compactness assump-
tions, this optimization problem is solvable (1) and most generally
satisfies

Tð~xÞ�Z
~Cð~xÞ

d~yGð~yÞ
�
2 ∝ 1;

where, intuitively, the functional derivative of 1=G gives 1=G2.
This has an interesting expansion when Cð~xÞ is small enough that
the integral over G can be approximated with the mean value
theorem, leaving

Gð~xÞ ∝
ffiffiffiffiffiffiffiffiffiffi
Tð~xÞ

p
:

Optimum Guess Distribution for a 2D Gaussian Target
Distribution
To interface with the main text, the target distribution is always
a 2D Gaussian with a square window of ±R= 28 for finding the
target. Here we will apply the search theory to calculate ideal
values of the measured quantities.

Guess Distribution.For the case of a 2DGaussian target distribution,

Gðx; yÞ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

 
−
x2 + y2

2σ2T

!vuut

∝ exp

 
−

x2 + y2

2
� ffiffiffi

2
p

σT
�2
!
:

In other words, for a Gaussian target distribution with SD σT , the
optimum guess distribution is also a Gaussian but with SD
σG =

ffiffiffi
2

p
σT .

The square root rule holds only when the size of the search
window is very small, but a low-order correction taking into ac-
count the window size has been derived elsewhere (1). The basic
idea is that as the window size increases, the width of the guess
distribution decreases because the searcher sees the tails for free
when looking near the center. The general result for Gaussians
and a search window of size ±R is that the optimum guess
distribution is also a Gaussian with SD

σG =
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2T −

R2

π2

s
; [S1]

and that is the formula used to estimate the ideal behavior in the
main text.

Mean Distance. The theory presented here predicts that the op-
timum guess distribution is a 2DGaussian with the same center as
the target distribution with a specific SD. In that case the mean
distance from the center of the target distribution is

hdi=
Z
dx
Z
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
2πσ2G

exp
�
−
x2 + y2

2σ2G

�
:

By switching to radial coordinates, the integral can be easily done
to give

hdi=
ffiffiffi
π

2

r
σG: [S2]

Number of Steps.The case of interest is 2D, and that happens to be
solvable in the sense that we can derive the mean number of steps
to find the target in terms of the SD of the guess and target
distributions. The average number of samples required to find the
target is
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hni= σ2G
σ2T

Z
dx
Z

dy
e
− 1

2
x2+y2

σ2
TR x+R

x−R du
R y+R
y−R dve

− 1
2
u2+v2

σ2
G

:

The double integral in the denominator represents the probability
of contacting the target for a guess at position ðu; vÞ, and the
numerator weights the probability that the target is actually at
that location. Here the boundaries are taken to be at infinity
because we will stay far away from them.
The integral in the denominator can be represented in terms of

complementary error functions as

Id =
1
4

�
erf
�
R+ xffiffiffi
2

p
σG

�
− erf

�
x−Rffiffiffi
2

p
σG

��

×
�
erf
�
R+ yffiffiffi
2

p
σG

�
− erf

�
y−Rffiffiffi
2

p
σG

��
:

Each of the differences of erfs (one for x and one for y) can be
approximated as a Gaussian by matching the zeroth and second
moments. Those are

I½0�d;x = erf
�

Rffiffiffi
2

p
σG

�

and

I½2�d;x = −
ffiffiffi
2
π

r
R
s3

e
− x2

2σ2
G :

Then, by matching moments, Id is well approximated as

Id ≈ erf2
�

Rffiffiffi
2

p
σG

�
e
− x2+y2

2σ2
H ;

where

σ2H =
σ3G
R

ffiffiffi
π

2

r
erf
�

Rffiffiffi
2

p
σG

�
e

R2

2σ2
G :

Finally, the double integral remaining for hni is just a Gaussian
integral:

hni≈ 1
2πσ2T

erf−2
�

Rffiffiffi
2

p
σG

�

×
RR

dxdy exp
�
−
1
2

�
1
σ2T

−
1
σ2H

��
x2 + y2

��
:

The 2D Gaussian integral happens to be exactly solvable and is

hni≈ erf−2
�

Rffiffiffi
2

p
σG

�
σ2H

σ2H − σ2T
: [S3]

This puts the average number of steps as a direct function of σG
and the given parameters R and σT (Fig. S1).
The measurement of the mean number of steps is difficult from

subject data because of the limited sample size. The agreement is
reasonably good with subjects approaching the optimum number
of steps (Table S1). Subjects do not actually reach the optimum,
but they get within a few steps of it. This may either be because the
behavior is good enough, or it may reflect errors due to the se-
quential effects that overemphasize looking near the last found
target. In the actual case of the experiment with randomly placed

targets, a tendency to go back to a recently rewarded location
increases the number of samples.

Simulated Step Number.To verify the calculation for the number of
steps and incorporate potential biases of the guess distribution,
we ran direct simulations of the experiment. A step of simulation
was as follows. For a given target distribution (Gaussians centered
at zero without loss of generality), we chose a random target
point. Then, from a given guess distribution (another Gaussian,
centered either 0° or 1° away with fixed σG), we chose search
points until the search was within ± 28 of the target in both the x
and y directions. The number of samples was then tabulated, and
its average and SE for each choice of the guess and target dis-
tributions estimated the average number of saccades required to
find the target. Note that in Fig. S1 the data points agree nearly
perfectly with the theory lines, although the approximations used
to generate the theory lines start to break down for the smallest
σG as expected because there was an expansion in σT=σG.

Reinforcement Learning Model
Reinforcement Learning. Participants’ behavior in the Hidden
Target Search Task is modeled within a reinforcement learning
framework (2). In reinforcement learning (RL), an agent operates
in a finite-state environment and takes actions that move it from
one state to another, leading to states associated with reward. In
the Hidden Target Search Task, the state space consists of the eye
position in the 2D display. We discretize this eye position in units
of 18; allowing eye position to vary from −128 to + 128, the state
space consists of 25× 25 locations. At the start of the trial, the
initial state of the model is at the fixation point in the center of the
display, ð0; 0Þ. The actions available to the model consist of sac-
cades specifying relative movement of the eyes, also discretized.
RL is concerned with discovering the action or action sequences
that lead to a reward.
The simplest RL approach is to define a value function, V ðsÞ,

that specifies the expected reward associated with each state s.
The value function might be implemented as a look-up table
associating each of the 25× 25 states with an expected reward.
When the target is detected, the value associated with the cur-
rent state is updated to reflect a rewarding event. The RL model
should select an action, a, in state s that maximize the value
V ðs+ aÞ. Because the eyes can in principle move from any po-
sition to any other position, decision making according to such a
model is independent of the current eye position: At each decision
point, the model should saccade to the most promising location on
the screen.
This intuitive model is naive as an explanation of how people

learn in two regards.

1. A look-up table encodes space as a set of distinct, nonover-
lapping locations. In contrast, neural representations in visual
cortex are coarse-coded: Neurons have broad, overlapping
receptive fields. Consequently, any learning about one lo-
cation will have a natural generalization gradient to nearby
locations. We incorporate this notion of generalization via
a kernel-based RL approach (3) in which the value function is
represented by a look-up table, but instead of updating the
value associated with the current state s, V ðsÞ, all states q are
updated with strength—or eligibility as it is called in the RL
literature—proportional to

expð−μks− qkÞ; [S4]

where μ is a free parameter of the model characterizing the
generalization gradient.

2. Individuals performing Hidden Target Search Task show
a strong proximity bias that favors shorter saccades, as illus-
trated by the distribution of saccade vectors (shifts in position
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from one fixation to the next) observed in our experiment
(Fig. S2). This proximity bias could be an emergent conse-
quence of some more fundamental cause, such as variability
in saccade outcomes growing with saccade distance (4, 5)
or representational inhomogeneities in the superior colli-
culus (6). The bias has been noted by other researchers and
can override knowledge that subjects have about the ex-
pected location of a target (7). However, we model the bias
directly by assuming a cost that grows with saccade dis-
tance, leading to an action selection rule in which the prob-
ability of making a relative saccade, a, from some state s is
proportional to

PðajsÞ∝ exp ðV ðs+ aÞ− ρkakÞ; [S5]

where ρ is a free parameter that scales the cost. This bias
transforms a task that has no inherent sequential structure (such
as maze learning) into a sequential decision task—a task in
which the model must plan sequences of actions to obtain a
reward. Thus, the temporal difference (TD) learning paradigm
(2) is appropriate for modeling learning and performance.With
these two extensions, our model can be cast in terms of traditional
TD value function learning, with an exploration policy specified
by a slightly embellished version of Eq. S5 in which we incor-
porate an exploration parameters β (for softmax action selec-
tion) and « (for «-greedy action selection):

PðajsÞ∝ exp ðβV ðs+ aÞ− ρkakÞ+ e: [S6]

Both forms of exploration were included because we were not
certain a priori which form would better match participant be-
havior. Softmax exploration turned out to be more important,
but «-greedy exploration better accommodated occasional off-
policy (random) actions. Our model included the standard TD
trace-decay parameter λ, usually notated as TD(λ), discount pa-
rameter γ, and learning rate α, yielding the TD rule for updating
the entire value function after each fixation:

ΔV
�
qjs; s′�= α

�
r+ γV

�
s′
�
−V ðsÞ�eligibilityðqÞ; [S7]

where s is the current state (fixation) of the model, s′ is the next
state, r is the instantaneous reward (1 if target is found at s,
0 otherwise), q is an index over all states, and eligibilityðqÞ is
an additive eligibility trace associated with state q, updated fol-
lowing each saccade according to TD(λ) with the additional spa-
tial blurring function of Eq. S4:

Δeligibility ðqjsÞ= ðγλ− 1Þeligibility ðqÞ+ exp ð−μks− qkÞ: [S8]

Bayesian interpretation of model.The model can be interpreted from
a Bayesian perspective in which the value function specifies the
log likelihood of reward given an action (saccade) and the
proximity bias specifies log priors over actions given the current
eye position. Via Eq. S6, actions are then selected from a pos-
terior distribution conditioned on the model’s current eye posi-
tion and experience history.
Training the model.The model has in total seven free parameters: α,
β, γ, «, λ, μ, and ρ. For each session of each participant, we
searched for the parameters that yielded the maximum likeli-
hood fit to the fixations of the first 20 trials of the session. The
likelihood is based on the joint probability of the fixation se-
quence over the first 20 trials, or, using the chain rule, the product
of the probabilities of each fixation contingent on the history
leading up to that fixation. Given a set of parameters, the model
specifies this probability. Over participants, there was a mean of
473 fixations in the first 20 trials.

We used an L1 distance metric in both Eqs. S6 and S8. We
noted in the data that many participants tended to produce
horizontal and vertical saccades, suggesting a city block metric to
be more sensible as a measure of proximity of two screen loca-
tions. Confirming this intuition, we found that the fixation like-
lihoods were higher using an L1 than using an L2 metric.
To assess the validity of our assumption that the reward signal

has spatial blurring, as embodied in μ, we constrained μ to a large
value (meaning no blurring) and refit the model. Similarly, to
assess the validity of our assumption of a saccade proximity bias,
as embodied in the coefficient ρ, we constrained the coefficient
to be zero and refit the model. In both cases, we found that
removal of the assumption yielded a noticeable decrease in the
goodness of fit to the fixation sequences, suggesting that these
two assumptions are warranted.
Fig. S3 depicts a sequence of saccades from one participant on

one trial, along with model predictions of where the participant
will look. This example follows 10 earlier successes at locating the
target. As the example shows, the model does a reasonable job of
predicting the participant’s specific eye movements.
Fig. S4 shows an example of the evolution of the value function

across trials as estimated by the RL model for the specific fixation
and reward sequence of one human participant.
Testing the model. Following training, in which model parameters
are determined from a participant’s fixation sequence, the param-
eterized model can be run in generative mode from a de novo state
to simulate the participant performing the task over a session. At
the start of the session, the value function is reset by assigning all
entries the value zero. The model begins each trial with fixation at
the origin, and each subsequent fixation is drawn from the distri-
bution specified by Eq. S6. Given feedback—success or failure in
locating the target—the eligibility trace and value function are up-
dated (Eqs. S7 and S8). This cycle repeats until the target is found
or until the trial limit is reached. Because the limit during the ex-
periments was defined by the passage of time (20 s) and the model
operates in abstract simulation steps, we assumed the mean time
per fixation for the model was the same as for its corresponding
participant and terminated the trial when the simulation time limit
was reached. Consequently, the model did not find the target on
every trial. The specific target location chosen on each trial was the
same as the location chosen for the corresponding participant on
that trial.
To collect statistics on the model’s performance, we used the

maximum likelihood parameter estimate for each participant in
each condition and ran 200 replications of the parameterized
model in generative mode using the same target location se-
quence over trials as was shown to the participant. The repli-
cations differed from one another in stochastic action selection.
Model statistics reported in the main text are means over the 200
replications, and either means or medians over the participants.
Individual differences in the emergent behavior of the model. Because
only the first 20 trials were used for training, and because the
criterion used to train the model (likelihood of a specific fixation
sequence) is only loosely related to the various performance
measures obtained from the model as it generated sequences of
decisions (e.g., mean distance from target centroid), it is non-
trivial that the model’s generated behavior matches the partic-
ipants’. Thus, we consider the simulation results presented in the
main text to be emergent predictions of the model.
Nonetheless, the results are limited in that they merely show that

the aggregate behavior of individuals corresponds to the behavior of
the model, averaged over multiple instantiations. The results say
little about how well the model can account for individual differ-
ences in performance. To explore how themodel—when trained on
fixation sequences of a particular individual—characterizes that
individual’s behavior, we examined two statistics of an individual’s
performance once behavior stabilized (trials 31–60): (i) mean
distance of fixations to the target centroid and (ii) fixation spread.
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These two measures are shown in aggregate across participants in
Fig. 2 A and B of the main text. Each of these measures correlates
well with the performance obtained by the model parameterized
for the individual (distance: Spearman’s ρ = 0.40, 0.71, and 0.53 for
target spreads 0.75, 2.00, and 2.75, respectively; spread: Spear-
man’s ρ = 0.24, 0.62, and 0.68). Thus, the model characterizes the
relative search distributions of individuals.
In a further exploration of individual differences, we observed

that some participants tended to begin a trial by making a se-
quence of fixations that gradually approached the target centroid,
whereas others made a saccade to the centroid and then moved
away on subsequent fixations. We characterized the initial tra-
jectory by computing the mean distance to the target centroid of
fixations 1–5 on trials 31–60 and computed the slope of the
regression line. Negative and positive slopes indicate trajectories
toward and away from the centroid, respectively. The Spearman
correlation coefficient relating the model’s predicted slope to
the corresponding participant’s slope was ρ= :48, indicating
that the model does a fair job of describing aspects of strategic
performance.

Sequential Dependencies. Based on observations of the RL model,
we predicted that participants in the experiment would exhibit
sequential dependencies—fixation behavior that was dependent
on the recent history of fixations and reward. We showed in the
main text that both model and participants showed reliable trial-
to-trial dependencies. Fig. 3 shows that sequential dependencies
extend back beyond the previous trial, and there is a decaying
influence of recent experience. The value-function update (Eq.
S7) is consistent with this decay, with exponential rate related to
α. Thus, performance is never static, but continually adapts to
the ongoing stream of experience. In both model and partic-
ipants, sequential dependencies persist throughout the session;
they are not merely a transient that occurs while the learner is
still trying to ascertain the target distribution.

Sequential dependencies occur in the RL model because the
value function is updated after every fixation, and with a constant
learning rate the function does not converge (i.e., adjustments to
the value function do not go to zero over time). Consequently,
there is a cost in performance because the true target distribution
is never exactly learned. More experience does not guarantee
a better representation of the target distribution. In contrast, the
ideal-observer theory is premised on perfect knowledge of the
target distribution. It specifies the level of human performance
that can be attained in a stationary environment.
Naturalistic environments are certainly nonstationary. In the

presence of nonstationarity, there is a benefit of continued sen-
sitivity to recent experience: When the environment changes, the
agent will rapidly adapt. The trade-off between performing well
in a fixed environment and rapidly learning a new environment
naturally leads to sequential dependencies (8–10). It remains
a final piece in the puzzle to develop an ideal-observer theory of
search in environments with known nonstationary characteristics,
combining both (1) and ideal-observer theories of change de-
tection (11, 12).
Addressing this puzzle may also help tackle a longstanding

question in visual search: What role does memory play? The role
of memory in visual search has been debated (13–15), and the
consensus is that the choice of the next saccade is informed by
memory for a small number of previously attended locations.
The value function in our RL model provides the substrate by
which this memory could be implemented. According to the
model, the memory is limited because (i) the value function
encodes long-term memory as well as short-term experience, and
the two are superimposed, (ii) the spatial generalization of re-
ward (via the μ parameter) blurs the memory, and (iii) explo-
ration (via the β parameter) weakens the guidance of memory on
action selection.
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Fig. S1. The theoretical mean number of steps required to find the target for σT = 0:75;2:00;and2:75, bottom line to top, respectively. The lines are
theoretical values, and the points are calculated with a direct simulation of the problem (1 million trials per point). The minimum point agrees well with
the calculated values.

Fig. S2. Histogram of the saccade vector (in degrees visual angle), computed across participants, sessions, trials, and fixations within a trial.

Chukoskie et al. www.pnas.org/cgi/content/short/1301216110 5 of 7

www.pnas.org/cgi/content/short/1301216110


Fig. S3. Simulation showing model behavior on one trial for one participant. Each row depicts a single fixation within the trial. The four columns depict the
eligibility trace, the value function, the penalty associated with an eye movement based on distance from the current location, and the model’s probability of
selecting a saccade destination. The open square in each panel indicates the target location for that trial, which is fixed. The open circle indicates the current
fixation (the trial starts with fixation at the center of the screen). The X indicates the participant’s next saccade destination. In all panels, values are indicated by
coloring, where low values are blue and high values are red. For example, in the final column, note that the actual fixation lies in the red region—the region
where the model predicts the next saccade to occur. The model correctly predicts that the participant will move their eyes to neighborhood of the target
centroid in the first saccade, and then will make short fixations in that neighborhood.
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Fig. S4. Value function learning: The RL model’s estimate of the value function given the fixation sequence of a particular individual in the experiment. Each
panel depicts the value function at the start of a trial for trials 1–20. The color scale ranges from blue to red, for low to high reward expectation. The green X
indicates the target centroid. The target neighborhood is rapidly identified, although the value distribution shifts slightly from trial to trial based on recent
experience.

Table S1. Mean steps to find the target

σT ,° hnifound hniall medianfound medianall hnitheory
0.75 2.6 (3) 2.6 (3) 2.0 (3) 2.0 (3) 1.01
2.00 8 (2) 18 (4) 6 (2) 6 (4) 6.26
2.75 17 (3) 22 (4) 13 (3) 15 (4) 11.86

Numbers in parentheses are the standard error in the last digit.

Table S2. Bias toward the center and its effect on the measured
quantities

σT ,° Measured bias, ° σG;theory, ° hnitheory
0.75 0.6 (3) 0.85 (5) 1.58 (1)
2.00 1.2 (3) 2.7 (5) 7.01 (2)
2.75 1.0 (5) 3.85 (5) 12.63 (3)

Positive bias is toward the center. Numbers in parentheses are the stan-
dard error in the last digit.
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